|
|
A216861
|
|
a(n) = 13*a(n-1) - 65*a(n-2) + 156*a(n-3) - 182*a(n-4) + 91*a(n-5) - 13*a(n-6).
|
|
3
|
|
|
0, -2, -9, -44, -215, -1001, -4446, -19058, -79677, -327418, -1329601, -5355272, -21446945, -85548138, -340268656, -1350664731, -5353389340, -21195056584, -83846301409, -331483318257, -1309872510973, -5174049465897, -20431456722794, -80660347594658
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) is equal to the rational part (with respect of the field Q(sqrt(13))) of the product sqrt(2*(13 + 3*sqrt(13)))*X(2*n-1)/13, where X(n) = sqrt((13-3*sqrt(13))/2)*X(n-1) + sqrt(13)*X(n-2) - sqrt((13+3*sqrt(13))/2)*X(n-3), with X(0)=3, X(1)=sqrt((13-3*sqrt(13))/2), and X(2)=-(13+sqrt(13))/2.
The sequence X(n) is defined in almost the same way as sequence Y(n) from the comments to A161905. The only difference is in the initial condition X(2) = -Y(2).
|
|
REFERENCES
|
R. Witula, On some applications of formulas for sums of the unimodular complex numbers, Wyd. Pracowni Komputerowej Jacka Skalmierskiego, Gliwice 2011 (in Polish).
|
|
LINKS
|
|
|
FORMULA
|
G.f.: -x^2*(26*x^4-84*x^3+57*x^2-17*x+2) / (13*x^6-91*x^5+182*x^4-156*x^3+65*x^2-13*x+1). - Colin Barker, Jun 01 2013
|
|
EXAMPLE
|
We have a(3)-5*a(2)=a(4)-5a(3)=1, a(5)-5*a(4)=5, and 19000 + a(8) = a(4) + 2*a(3) - 2*a(2).
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|