login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216859
G.f.: Sum_{n>=0} n!^2 * x^n / Product_{k=1..2*n} (1 + k*x).
3
1, 1, 1, 3, 65, 1871, 69885, 3466339, 222981385, 18102473271, 1811907033269, 219290184518315, 31573338878091585, 5334099790769759551, 1045025926871985755053, 235016617680587793977331, 60133997212733124023350265, 17369999617568255471165082311
OFFSET
0,4
COMMENTS
Compare g.f. to: 1/(1-x) = Sum_{n>=0} n!*x^n/Product_{k=1..n} (1 + k*x).
LINKS
FORMULA
a(n) ~ exp(-2) * (n!)^2. - Vaclav Kotesovec, Nov 01 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 65*x^4 + 1871*x^5 + 69885*x^6 +...
where
A(x) = 1 + x/((1+x)*(1+2*x)) + 2!^2*x^2/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +
3!^2*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)*(1+6*x)) +
4!^2*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)*(1+6*x)*(1+7*x)*(1+8*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, 2*m, 1+k*x +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A197043 A188984 A112000 * A346162 A012804 A348084
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2012
STATUS
approved