OFFSET
0,4
COMMENTS
Compare g.f. to: 1/(1-x) = Sum_{n>=0} n!*x^n/Product_{k=1..n} (1 + k*x).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..220
FORMULA
a(n) ~ exp(-2) * (n!)^2. - Vaclav Kotesovec, Nov 01 2014
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 65*x^4 + 1871*x^5 + 69885*x^6 +...
where
A(x) = 1 + x/((1+x)*(1+2*x)) + 2!^2*x^2/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) +
3!^2*x^3/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)*(1+6*x)) +
4!^2*x^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)*(1+6*x)*(1+7*x)*(1+8*x)) +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, m!^2*x^m/prod(k=1, 2*m, 1+k*x +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2012
STATUS
approved