|
|
A216863
|
|
The decimal expansion of the maximal zero x(3) of the function F(x) = f(f(x)) - x, where f(x) = cos(x) - sin(x).
|
|
2
|
|
|
1, 4, 1, 2, 7, 9, 4, 5, 8, 5, 7, 2, 7, 6, 2, 2, 2, 4, 5, 2, 9, 3, 5, 7, 7, 5, 8, 6, 5, 0, 6, 6, 3, 7, 6, 3, 2, 1, 2, 4, 5, 5, 8, 8, 9, 1, 2, 7, 3, 8, 1, 5, 1, 6, 5, 8, 6, 4, 1, 7, 7, 5, 2, 5, 5, 3, 0, 1, 1, 2, 5, 2, 4, 7, 7, 1, 2, 2, 0, 5, 5, 1, 8, 2, 4, 3, 3, 4, 0, 8, 7, 8, 5, 0, 0, 6, 0, 8, 9, 2, 5, 6, 1, 5, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
The decimal expansions of the only other zeros x(1) and x(2) of F(x) are given in A216891 and A206291. See the comments in A216891 for more information about intriguing properties of these zeros.
|
|
LINKS
|
|
|
EXAMPLE
|
We have x(3) = 1.4127945857276222... < sqrt(2).
|
|
MATHEMATICA
|
f[x_] := Cos[x] - Sin[x];
FindRoot[f[f[x]] - x, {x, 1.4}, WorkingPrecision -> 110] (* T. D. Noe, Sep 24 2012; first line by Rick L. Shepherd, Jan 04 2014 *)
|
|
PROG
|
(PARI)
default(realprecision, 110);
f(x) = cos(x) - sin(x);
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|