login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232683 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (3*n)!/n!^3, which is De Bruijn's sequence S(3,n) (A006480), for n>=0. 9
1, 5, 27, 191, 1732, 18690, 226300, 2964284, 41082774, 593967362, 8873943769, 136095567381, 2132329828638, 34008171994644, 550591656446061, 9029248417359913, 149726007326186129, 2507013639225903129, 42337830100883644650, 720436676774318943294, 12342627498327879008169 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = (2*n)!/n!^2 = A000984(n).

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^(2*n) = (3*n)!/(n!*(2*n)!) = A005809(n).

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..200

FORMULA

Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = (3*n)!/n!^3 = A000984(n)*A005809(n).

Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (3*n)!/n!^3 * x^n.

EXAMPLE

G.f.: A(x) = 1 + 5*x + 27*x^2 + 191*x^3 + 1732*x^4 + 18690*x^5 +...

ILLUSTRATION OF INITIAL TERMS.

If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:

A^0: [1], 0,    0,     0,      0,       0,        0,         0, ...;

A^1: [1,  5],  27,   191,   1732,   18690,   226300,   2964284, ...;

A^2: [1, 10,   79],  652,   6103,   65014,   769509,   9862452, ...;

A^3: [1, 15,  156,  1508], 15138,  164232,  1933920,  24464106, ...;

A^4: [1, 20,  258,  2884,  31487], 355104,  4228676,  53345608, ...;

A^5: [1, 25,  385,  4905,  58425,  693015], 8452145, 107398205, ...;

A^6: [1, 30,  537,  7696,  99852, 1253100, 15791920],203842404, ...;

A^7: [1, 35,  714, 11382, 160293, 2133369, 27940444, 368826722], ...; ...

then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals (3*n)!/n!^3 (A006480):

(3*0)!/0!^3 = 1 = 1;

(3*1)!/1!^3 = 1 +  5 = 6;

(3*2)!/2!^3 = 1 + 10 +  79 = 90;

(3*3)!/3!^3 = 1 + 15 + 156 + 1508 = 1680;

(3*4)!/4!^3 = 1 + 20 + 258 + 2884 + 31487 = 34650;

(3*5)!/5!^3 = 1 + 25 + 385 + 4905 + 58425 +  693015 = 756756;

(3*6)!/6!^3 = 1 + 30 + 537 + 7696 + 99852 + 1253100 + 15791920 = 17153136; ...

RELATED SERIES.

From a main diagonal in the above array we can derive the sequence:

[1/1, 10/2, 156/3, 2884/4, 58425/5, 1253100/6, 27940444/7, ...] =

[1, 5, 52, 721, 11685, 208850, 3991492, 80086117, 1667185489, ...];

from which we can form the series G(x) = A(x*G(x)):

G(x) = 1 + 5*x + 52*x^2 + 721*x^3 + 11685*x^4 + 208850*x^5 + 3991492*x^6 +...

such that

(G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = 1 + 6*x + 90*x^2 + 1680*x^3 + 34650*x^4 + 756756*x^5 + 17153136*x^6 +...+ A006480(n)*x^n +...

MATHEMATICA

a[0] = 1; a[n_] := Module[{S3, G}, S3 = Sum[((3*k)!/k!^3)*x^k, {k, 0, n + 1}] + x^3*O[x]^n; G = 1 + x*O[x]^n; For[i = 1, i <= n, i++, G = 1 + Integrate[(S3-1)*(G/x) - S3*G^2, x]]; SeriesCoefficient[ x/InverseSeries[ x*G, x], {x, 0, n}]];

Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 15 2018, translated from 2nd PARI program *)

PROG

(PARI) /* By Definition: */

{a(n)=if(n==0, 1, ((3*n)!/n!^3 - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}

for(n=0, 20, print1(a(n)*1!, ", "))

(PARI) /* Faster, using series reversion: */

{a(n)=local(S3=sum(k=0, n+1, (3*k)!/k!^3*x^k)+x^3*O(x^n), G=1+x*O(x^n));

for(i=1, n, G = 1 + intformal( (S3-1)*G/x - S3*G^2)); polcoeff(x/serreverse(x*G), n)}

for(n=0, 30, print1(a(n), ", "))

CROSSREFS

Cf. A232606, A006480.

Sequence in context: A231091 A205774 A326094 * A240637 A023811 A126119

Adjacent sequences:  A232680 A232681 A232682 * A232684 A232685 A232686

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 3 20:35 EST 2021. Contains 349468 sequences. (Running on oeis4.)