This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A232606 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (2*n)!^2/n!^4, the square of the central binomial coefficients (A000984), for n>=0. 11
 1, 3, 10, 42, 221, 1379, 9678, 73666, 594326, 5007958, 43641702, 390632678, 3573598539, 33289289533, 314871186248, 3017358158132, 29242725947318, 286209134234602, 2825613061237808, 28111283170770480, 281598654896870051, 2838309465080014489, 28767973963085929656, 293059625830028920012 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = (2*n)!/n!^2 = A000984(n). a(n+1)/a(n) tends to 11.3035... - Vaclav Kotesovec, Jan 23 2014 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..350 FORMULA Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = (2*n)!^2/n!^4 = A000984(n)^2. Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (2*n)!^2/n!^4 * x^n. EXAMPLE G.f.: A(x) = 1 + 3*x + 10*x^2 + 42*x^3 + 221*x^4 + 1379*x^5 + 9678*x^6 +... ILLUSTRATION OF INITIAL TERMS. If we form an array of coefficients of x^k in A(x)^n, n>=0, like so: A^0: [1], 0,   0,    0,     0,      0,       0,        0,         0, ...; A^1: [1,  3], 10,   42,   221,   1379,    9678,    73666,    594326, ...; A^2: [1,  6,  29], 144,   794,   4924,   33814,   251544,   1988885, ...; A^3: [1,  9,  57,  333], 1989,  12669,   86935,   639123,   4979499, ...; A^4: [1, 12,  94,  636,  4157], 27728,  193504,  1423120,  11006058, ...; A^5: [1, 15, 140, 1080,  7730,  54538], 391970,  2915490,  22558825, ...; A^6: [1, 18, 195, 1692, 13221,  99102,  739547], 5612016,  43767477, ...; A^7: [1, 21, 259, 2499, 21224, 169232, 1317722, 10267666], 81223912, ...; A^8: [1, 24, 332, 3528, 32414, 274792, 2238492, 17990904, 145096413], ...; ... then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals the square of the central binomial coefficients: 1^1 = 1; 2^2 = 1 + 3; 6^2 = 1 +  6 +  29; 20^2 = 1 +  9 +  57 +  333; 70^2 = 1 + 12 +  94 +  636 +  4157; 252^2 = 1 + 15 + 140 + 1080 +  7730 +  54538; 924^2 = 1 + 18 + 195 + 1692 + 13221 +  99102 +  739547; 3432^2 = 1 + 21 + 259 + 2499 + 21224 + 169232 + 1317722 + 10267666; ... RELATED SERIES. From a main diagonal in the above array we can derive sequence A232607: [1/1, 6/2, 57/3, 636/4, 7730/5, 99102/6, 1317722/7, 17990904/8, ...] = [1, 3, 19, 159, 1546, 16517, 188246, 2248863, 27844369, 354576634, ...]; from which we can form the series G(x) = A(x*G(x)): G(x) = 1 + 3*x + 19*x^2 + 159*x^3 + 1546*x^4 + 16517*x^5 + 188246*x^6 +... such that (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = 1 + 2^2*x + 6^2*x^2 + 20^2*x^3 + 70^2*x^4 + 252^2*x^5 +...+ A000984(n)^2*x^n +... MATHEMATICA terms = 24; a[0] = 1; A[x_] = Sum[a[n]*x^n, {n, 0, terms - 1}]; c[n_] := Sum[Coefficient[B[x], x, k], {k, 0, n}] == (2*n)!^2/n!^4 // Solve // First; Do[B[x_] = A[x]^n + O[x]^(n+1) // Normal; A[x_] = (A[x] /. c[n]) + O[x]^terms, {n, 0, terms-1}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 14 2018 *) PROG (PARI) /* By Definition: */ {a(n)=if(n==0, 1, ((2*n)!^2/n!^4 - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)} for(n=0, 20, print1(a(n)*1!, ", ")) (PARI) /* Faster, using series reversion: */ {a(n)=local(CB2=sum(k=0, n, binomial(2*k, k)^2*x^k)+x*O(x^n), G=1+x*O(x^n)); for(i=1, n, G = 1 + intformal( (CB2-1)*G/x - CB2*G^2)); polcoeff(x/serreverse(x*G), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A232683, A232607, A232687, A000984, A002894. Sequence in context: A030867 A186360 A007680 * A185621 A190657 A143523 Adjacent sequences:  A232603 A232604 A232605 * A232607 A232608 A232609 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 26 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 14:17 EDT 2019. Contains 321431 sequences. (Running on oeis4.)