login
Number of subsets of {1..n} containing all of their pairwise sums <= n.
92

%I #16 Mar 24 2022 17:34:50

%S 1,2,3,5,7,12,16,27,37,58,80,131,171,277,380,580,785,1250,1655,2616,

%T 3516,5344,7257,11353,14931,23204,31379,47511,63778,98681,130503,

%U 201357,270038,407429,548090,840171,1110429,1701872,2284325,3440337,4601656

%N Number of subsets of {1..n} containing all of their pairwise sums <= n.

%C The summands are allowed to be equal. The case where they must be distinct is A326080. If A007865 counts sum-free sets, this sequence counts sum-closed sets. This is different from sum-full sets (A093971).

%C From _Gus Wiseman_, Jul 08 2019: (Start)

%C Also the number of subsets of {1..n} containing no sum of any multiset of the elements. For example, the a(0) = 1 through a(6) = 16 subsets are:

%C {} {} {} {} {} {} {}

%C {1} {1} {1} {1} {1} {1}

%C {2} {2} {2} {2} {2}

%C {3} {3} {3} {3}

%C {2,3} {4} {4} {4}

%C {2,3} {5} {5}

%C {3,4} {2,3} {6}

%C {2,5} {2,3}

%C {3,4} {2,5}

%C {3,5} {3,4}

%C {4,5} {3,5}

%C {3,4,5} {4,5}

%C {4,6}

%C {5,6}

%C {3,4,5}

%C {4,5,6}

%C (End)

%H Fausto A. C. Cariboni, <a href="/A326083/b326083.txt">Table of n, a(n) for n = 0..100</a>

%F For n > 0, a(n) = A103580(n) + 1.

%e The a(0) = 1 through a(6) = 16 subsets:

%e {} {} {} {} {} {} {}

%e {1} {2} {2} {3} {3} {4}

%e {1,2} {3} {4} {4} {5}

%e {2,3} {2,4} {5} {6}

%e {1,2,3} {3,4} {2,4} {3,6}

%e {2,3,4} {3,4} {4,5}

%e {1,2,3,4} {3,5} {4,6}

%e {4,5} {5,6}

%e {2,4,5} {2,4,6}

%e {3,4,5} {3,4,6}

%e {2,3,4,5} {3,5,6}

%e {1,2,3,4,5} {4,5,6}

%e {2,4,5,6}

%e {3,4,5,6}

%e {2,3,4,5,6}

%e {1,2,3,4,5,6}

%e The a(7) = 27 subsets:

%e {} {4} {36} {246} {2467} {24567} {234567} {1234567}

%e {5} {45} {356} {3467} {34567}

%e {6} {46} {367} {3567}

%e {7} {47} {456} {4567}

%e {56} {457}

%e {57} {467}

%e {67} {567}

%t Table[Length[Select[Subsets[Range[n]],SubsetQ[#,Select[Plus@@@Tuples[#,2],#<=n&]]&]],{n,0,10}]

%Y Cf. A007865, A050291, A051026, A054519, A085489, A093971, A103580, A120641, A151897, A326020, A326023, A326076, A326080.

%K nonn

%O 0,2

%A _Gus Wiseman_, Jun 05 2019