The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A050291 Number of double-free subsets of {1, 2, ..., n}. 18
 1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS A set is double-free if it does not contain both x and 2x. So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019 REFERENCES Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..4030 (terms n = 1..400 from T. D. Noe) Steven R. Finch, Triple-Free Sets of Integers [From Steven Finch, Apr 20 2019] Eric Weisstein's World of Mathematics, Double-Free Set. FORMULA a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814. a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003 EXAMPLE From Gus Wiseman, Jul 08 2019: (Start) The a(0) = 1 through a(5) = 20 double-free subsets:   {}  {}   {}   {}     {}       {}       {1}  {1}  {1}    {1}      {1}            {2}  {2}    {2}      {2}                 {3}    {3}      {3}                 {1,3}  {4}      {4}                 {2,3}  {1,3}    {5}                        {1,4}    {1,3}                        {2,3}    {1,4}                        {3,4}    {1,5}                        {1,3,4}  {2,3}                                 {2,5}                                 {3,4}                                 {3,5}                                 {4,5}                                 {1,3,4}                                 {1,3,5}                                 {1,4,5}                                 {2,3,5}                                 {3,4,5}                                 {1,3,4,5} (End) MAPLE a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)       /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))     end: seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019 MATHEMATICA a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *) Table[Length[Select[Subsets[Range[n]], Intersection[#, #/2]=={}&]], {n, 0, 10}] (* Gus Wiseman, Jul 08 2019 *) PROG (PARI) first(n)=my(v=vector(n)); v[1]=2; for(k=2, n, v[k]=v[k-1]*fibonacci(valuation(k, 2)+3)/fibonacci(valuation(k, 2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017 CROSSREFS Cf. A000045, A007814, A050292-A050296. Cf. A007865, A103580, A120641, A308546, A320340, A323092, A326083, A326115. Sequence in context: A001678 A113292 A342012 * A324739 A214002 A305889 Adjacent sequences:  A050288 A050289 A050290 * A050292 A050293 A050294 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Extended with formula by Christian G. Bower, Sep 15 1999 a(0)=1 prepended by Alois P. Heinz, Jan 16 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 07:45 EDT 2021. Contains 346384 sequences. (Running on oeis4.)