login
A326115
Number of maximal double-free subsets of {1..n}.
4
1, 1, 2, 2, 2, 2, 4, 4, 6, 6, 12, 12, 12, 12, 24, 24, 32, 32, 64, 64, 64, 64, 128, 128, 192, 192, 384, 384, 384, 384, 768, 768, 960, 960, 1920, 1920, 1920, 1920, 3840, 3840, 5760, 5760, 11520, 11520, 11520, 11520, 23040, 23040, 30720, 30720
OFFSET
0,3
COMMENTS
A set is double-free if no element is twice any other element.
LINKS
FORMULA
From Charlie Neder, Jun 11 2019: (Start)
a(n) = Product {k < n/2} A000931(8+floor(log_2(n/(2k+1)))).
a(2k+1) = a(2k), a(8k+4) = a(8k+3). (End)
EXAMPLE
The a(1) = 1 through a(9) = 6 sets:
{1} {1} {13} {23} {235} {235} {2357} {13457} {134579}
{2} {23} {134} {1345} {256} {2567} {13578} {135789}
{1345} {13457} {14567} {145679}
{1456} {14567} {15678} {156789}
{23578} {235789}
{25678} {256789}
MATHEMATICA
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, 2*#]=={}&]]], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 06 2019
EXTENSIONS
a(16)-a(49) from Charlie Neder, Jun 11 2019
STATUS
approved