login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326116
Number of subsets of {2..n} containing no products of two or more distinct elements.
8
1, 2, 4, 8, 16, 28, 56, 100, 200, 364, 728, 1232, 2464, 4592, 8296, 15920, 31840, 55952, 111904, 195712, 362336, 697360, 1394720, 2334112, 4668224, 9095392, 17225312, 31242784, 62485568, 106668608, 213337216, 392606528, 755131840, 1491146912, 2727555424, 4947175712
OFFSET
1,2
COMMENTS
First differs from A308542 at a(12) = 1232, A308542(12) = 1184.
If this sequence counts product-free sets, A308542 counts product-closed sets.
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..47
FORMULA
For n > 0, a(n) = A326117(n) - 1.
EXAMPLE
The a(6) = 28 subsets:
{} {2} {2,3} {2,3,4} {2,3,4,5}
{3} {2,4} {2,3,5} {2,4,5,6}
{4} {2,5} {2,4,5} {3,4,5,6}
{5} {2,6} {2,4,6}
{6} {3,4} {2,5,6}
{3,5} {3,4,5}
{3,6} {3,4,6}
{4,5} {3,5,6}
{4,6} {4,5,6}
{5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[2, n]], Intersection[#, Select[Times@@@Subsets[#, {2}], #<=n&]]=={}&]], {n, 10}]
PROG
(PARI)
a(n)={
my(recurse(k, ep)=
if(k > n, 1,
my(t = self()(k + 1, ep));
if(!bittest(ep, k),
forstep(i=n\k, 1, -1, if(bittest(ep, i), ep=bitor(ep, 1<<(k*i))));
t += self()(k + 1, ep);
);
t);
);
recurse(2, 2);
} \\ Andrew Howroyd, Aug 25 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 06 2019
EXTENSIONS
Terms a(21)-a(36) from Andrew Howroyd, Aug 25 2019
STATUS
approved