login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355969
Positions of records in A227872, i.e., integers whose number of odious divisors sets a new record.
6
1, 2, 4, 8, 16, 28, 56, 84, 112, 168, 336, 672, 1344, 2184, 4368, 8736, 17472, 30576, 34944, 41664, 48048, 61152, 80080, 83328, 96096, 122304, 160160, 192192, 240240, 320320, 336336, 480480, 672672, 960960, 1345344, 1681680, 1921920, 2489760, 2690688, 2738736
OFFSET
1,2
COMMENTS
Corresponding records of number of odious divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...
EXAMPLE
a(7) = 56 is in the sequence because A227872(56) = 8 is larger than any earlier value in A227872.
MATHEMATICA
f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* Amiram Eldar, Jul 22 2022 *)
PROG
(PARI) lista(nn)= my(list = List(), m=0, new); for (n=1, nn, new = sumdiv(n, d, isod(d)); if (new > m, listput(list, n); m = new); ); Vec(list); \\ Michel Marcus, Jul 22 2022
(Python)
from sympy import divisors
from itertools import count, islice
def c(n): return bin(n).count("1")&1
def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
def agen(record=-1):
for k in count(1):
if f(k) > record: record = f(k); yield k
print(list(islice(agen(), 30))) # Michael S. Branicky, Jul 23 2022
CROSSREFS
Similar sequences: A093036, A093037, A330815, A340549.
Sequence in context: A318767 A208531 A349052 * A308542 A326116 A054189
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Jul 22 2022
EXTENSIONS
More terms from Amiram Eldar, Jul 22 2022
STATUS
approved