Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Jul 24 2022 03:57:08
%S 1,2,4,8,16,28,56,84,112,168,336,672,1344,2184,4368,8736,17472,30576,
%T 34944,41664,48048,61152,80080,83328,96096,122304,160160,192192,
%U 240240,320320,336336,480480,672672,960960,1345344,1681680,1921920,2489760,2690688,2738736
%N Positions of records in A227872, i.e., integers whose number of odious divisors sets a new record.
%C Corresponding records of number of odious divisors are 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...
%e a(7) = 56 is in the sequence because A227872(56) = 8 is larger than any earlier value in A227872.
%t f[n_] := DivisorSum[n, 1 &, OddQ[DigitCount[#, 2, 1]] &]; fm = -1; s = {}; Do[If[(fn = f[n]) > fm, fm = fn; AppendTo[s, n]], {n, 1, 10^5}]; s (* _Amiram Eldar_, Jul 22 2022 *)
%o (PARI) lista(nn)= my(list = List(), m=0, new); for (n=1, nn, new = sumdiv(n, d, isod(d)); if (new > m, listput(list, n); m = new);); Vec(list); \\ _Michel Marcus_, Jul 22 2022
%o (Python)
%o from sympy import divisors
%o from itertools import count, islice
%o def c(n): return bin(n).count("1")&1
%o def f(n): return sum(1 for d in divisors(n, generator=True) if c(d))
%o def agen(record=-1):
%o for k in count(1):
%o if f(k) > record: record = f(k); yield k
%o print(list(islice(agen(), 30))) # _Michael S. Branicky_, Jul 23 2022
%Y Cf. A000069, A093696, A227872, A330289, A355968.
%Y Similar sequences: A093036, A093037, A330815, A340549.
%K nonn,base
%O 1,2
%A _Bernard Schott_, Jul 22 2022
%E More terms from _Amiram Eldar_, Jul 22 2022