login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355967
Indices of the primes that occur in A104589.
1
1, 3, 6, 25, 104, 634, 1236, 22613, 103409, 929044, 6298419, 80396036, 843325558, 5843115733, 24428345613, 515211289906, 4021634909249, 77930896716918, 387592118891917, 53467625139656294, 258820291307490689, 2600667638804262010, 29899374277934530878
OFFSET
1,2
EXAMPLE
The primes in A104589 are 2, 5, 13, 97, ... with prime indices 1, 3, 6, 25, ...
MATHEMATICA
s[1] = 1; s[n_] := s[n] = s[n - 1] + Sum[If[CompositeQ[s[k]], 0, s[k]], {k, 1, n - 1}]; PrimePi[Select[s /@ Range[200], PrimeQ[#] &]] (* Amiram Eldar, Jul 21 2022 *)
PROG
(PARI) lista(nn) = my(last=1, s = 1, list = List()); for (n=2, nn, last += s; if (isprime(last), s += last; listput(list, primepi(last))); ); Vec(list);
(Python)
from sympy import isprime, primepi
from itertools import islice
def A355967_gen(): # generator of terms
a, b = 1, 1
while True:
a += b
if isprime(a):
b += a
yield primepi(a)
A355967_list = list(islice(A355967_gen(), 14)) # Chai Wah Wu, Jun 03 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Jul 21 2022
EXTENSIONS
a(14)-a(20) from Amiram Eldar, Jul 21 2022
a(21)-a(23) from Chai Wah Wu, Jun 03 2024
STATUS
approved