login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326118
a(n) is the largest number of squares of unit area connected only at corners and without holes that can be inscribed in an n X n square.
6
0, 1, 2, 5, 6, 9, 14, 21, 24, 29, 36, 45, 50, 57, 66, 77, 84, 93, 104, 117, 126, 137, 150, 165, 176, 189, 204, 221, 234, 249, 266, 285, 300, 317, 336, 357, 374, 393, 414, 437, 456, 477, 500, 525, 546, 569, 594, 621, 644, 669, 696, 725, 750, 777, 806, 837, 864, 893
OFFSET
0,3
COMMENTS
a(n) is equal to h_4(n) as defined in A309038.
a(n) is the maximum size of an induced subtree in the graph of the black squares of an n X n checkerboard, where edges connect diagonally adjacent squares. - Andrew Howroyd, Sep 10 2019
FORMULA
O.g.f.: x*(1 + 2*x^2 - 2*x^3 + x^4 + 2*x^5 - 2*x^7)/((1 - x)^3*(1 + x)*(1 + x^2)).
E.g.f.: -3*exp(-x)/8 + (2 + x)^2 + exp(x)/8*(-29 + 2*x*(7 + x)) - 3*sin(x)/2.
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n > 8.
a(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*(-1)^n - 12*sin(n*Pi/2)) for n > 2, a(0) = 0, a(1) = 1, a(2) = 2.
Limit_{n->oo} a(n)/A000290(n) = 1/4.
EXAMPLE
Illustrations for n = 1..7:
__ __ __ __
|__| |__|__ |__|__|__|
|__| __|__|__
|__| |__|
a(1) = 1 a(2) = 2 a(3) = 5
__ __ __ __
|__|__|__| |__|__|__|
__|__|__ __|__|__ __
|__| |__|__ |__| |__|__|__|
|__| __|__|__
|__| |__|
a(4) = 6 a(5) = 9
__ __ __ __ __ __ __
|__|__|__| |__|__ |__|__|__| |__|__|__|
__|__|__ __|__| __|__|__ __|__|__
|__| |__|__|__| |__| |__|__|__| |__|
__ __|__|__ __ __|__|__ __
|__|__|__| |__|__ |__|__|__| |__|__|__|
|__| |__| __|__|__ __|__|__
|__| |__| |__| |__|
a(6) = 14 a(7) = 21
MATHEMATICA
Join[{0, 1, 2}, Table[(1/8)*(-29+12*n+2*n^2-3(-1)^n-12*Sin[n*Pi/2]), {n, 3, 57}]]
PROG
(Magma) I:=[0, 1, 2, 5, 6, 9, 14, 21, 24]; [n le 9 select I[n] else 2*Self(n-1)-Self(n-2)+Self(n-4)-2*Self(n-5)+Self(n-6): n in [1..58]];
(PARI) concat([0], Vec(x*(-1-2*x^2+2*x^3-x^4-2*x^5+2*x^7)/((-1+x)^3*(1+x)*(1+x^2))+O(x^58)))
CROSSREFS
Cf. A000290, A309038, A338329 (1st differences).
Sequence in context: A256264 A256249 A169779 * A301791 A051677 A122965
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Sep 10 2019
STATUS
approved