login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256264
Partial sums of A256263.
8
0, 1, 2, 5, 6, 9, 14, 21, 22, 25, 30, 37, 42, 53, 70, 85, 86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269, 310, 341, 342, 345, 350, 357, 362, 373, 390, 405, 410, 421, 438, 461, 490, 525, 566, 597, 602, 613, 630, 653, 682, 717, 758, 805, 858, 917, 982, 1053, 1130, 1213, 1302, 1365
OFFSET
0,3
COMMENTS
First differs from A255747 at a(27).
FORMULA
a(n) = (A256260(n+1) - 1)/4.
EXAMPLE
Also, written as an irregular triangle in which the row lengths are the terms of A011782, the sequence begins:
0,
1,
2, 5,
6, 9, 14, 21,
22, 25, 30, 37, 42, 53, 70, 85;
86, 89, 94, 101, 106, 117, 134, 149, 154, 165, 182, 205, 234, 269,310,341;
...
It appears that the first column gives 0 together with the terms of A047849, hence the right border gives A002450.
It appears that this triangle at least shares with the triangles from the following sequences; A151920, A255737, A255747, A256249, the positive elements of the columns k, if k is a power of 2.
From _Omar E. Pol, Jan 02 2016: (Start)
Illustration of initial terms in the fourth quadrant of the square grid:
---------------------------------------------------------------------------
n a(n) Compact diagram
---------------------------------------------------------------------------
0 0 _
1 1 |_|_ _
2 2 |_| |
3 5 |_ _|_ _ _ _
4 6 |_| | | |
5 9 |_ _| | |
6 14 |_ _ _| |
7 21 |_ _ _ _|_ _ _ _ _ _ _ _
8 22 |_| | | |_ _ | |
9 25 |_ _| | |_ | | |
10 30 |_ _ _| | | | | |
11 37 |_ _ _ _| | | | |
12 42 | | |_ _ _| | | |
13 53 | |_ _ _ _ _| | |
14 70 |_ _ _ _ _ _ _| |
15 85 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
16 86 |_| | | |_ _ | |_ _ _ _ _ _ | |
17 89 |_ _| | |_ | | |_ _ _ _ _ | | |
18 94 |_ _ _| | | | | |_ _ _ _ | | | |
19 101 |_ _ _ _| | | | |_ _ _ | | | | |
20 106 | | |_ _ _| | | |_ _ | | | | | |
21 117 | |_ _ _ _ _| | |_ | | | | | | |
22 134 |_ _ _ _ _ _ _| | | | | | | | | |
23 149 |_ _ _ _ _ _ _ _| | | | | | | | |
24 154 | | | | | | |_ _ _| | | | | | | |
25 165 | | | | | |_ _ _ _ _| | | | | | |
26 182 | | | | |_ _ _ _ _ _ _| | | | | |
27 205 | | | |_ _ _ _ _ _ _ _ _| | | | |
28 234 | | |_ _ _ _ _ _ _ _ _ _ _| | | |
29 269 | |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
30 310 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
31 341 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
a(n) is also the total number of cells in the first n regions of the diagram. A256263(n) gives the number of cells in the n-th region of the diagram.
(End)
MATHEMATICA
Accumulate@Flatten@Join[{0}, NestList[Join[#, Range[Length[#] - 1]*6 - 1, {2 #[[-1]] + 1}] &, {1}, 5]] (* Ivan Neretin, Feb 14 2017 *)
KEYWORD
nonn,look
AUTHOR
Omar E. Pol, Mar 30 2015
STATUS
approved