login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346787
Ordered lone-child-avoiding trees where vertices have decreasing subtree sizes.
1
1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 68, 128, 253, 489, 981, 1930, 3899, 7771, 15858, 31915, 65503, 133070, 274631, 561371, 1164240, 2393652, 4983614, 10299238, 21511537, 44637483, 93552858, 194809152, 409270569, 855199845, 1800958182, 3773297872, 7963655481
OFFSET
1,5
COMMENTS
a(n) is the number of size-n, rooted, ordered, lone-child-avoiding trees in which the subtrees of each non-leaf vertex, taken left to right, have weakly decreasing sizes, where size is measured by number of vertices.
The analogous trees when size is measured by number of leaves are counted by A196545.
LINKS
David Callan, A Combinatorial Interpretation for Sequence A345973 in OEIS, arXiv:2108.04969 [math.CO], 2021.
FORMULA
Counting by sizes of subtrees of the root, a(n) is the sum, over all non-singleton partitions i_1,i_2,...,i_k of n-1, of the product a(i_1)a(i_2) ... a(i_k).
G.f. satisfies A(x)=x/((1+x)*Product_{n>=1} (1 - a(n)*x^n)).
EXAMPLE
See Link.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
end:
a:= n-> b(n-1, n-2):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2021
MATHEMATICA
a[1] = 1; a[2] = 0;
a[n_] /; n >= 3 := a[n] = Apply[Plus, Map[Apply[Times, Map[a, #]] &, Rest[IntegerPartitions[n - 1]]]]
Table[a[n], {n, 20}]
CROSSREFS
Cf. A196545.
Sequence in context: A005833 A247162 A001678 * A113292 A342012 A050291
KEYWORD
nonn
AUTHOR
David Callan, Aug 03 2021
STATUS
approved