The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247162 G.f. 1-(2*x^3)/(-sqrt(-3*x^4-4*x^3-2*x^2+1)-x^2+1). 0
 1, 0, 1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 66, 125, 240, 462, 897, 1750, 3431, 6756, 13357, 26499, 52744, 105292, 210761, 422928, 850631, 1714505, 3462538, 7005661, 14198718, 28823497, 58600076, 119306476, 243224949, 496475106, 1014616271 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,7 LINKS Table of n, a(n) for n=1..37. FORMULA a(n) = sum(k=1..n, (sum(j=0..k, binomial(j,n-k-j)*binomial(k,j)) * binomial(n-k-2,k-1))/k). D-finite with recurrence: (n-1)*n*a(n) = 6*(n-8)*(n-7)*a(n-7) + 2*(5+7*(n-7))*(n-7)*a(n-6) + (24+43*(n-7)+15*(n-7)^2)*a(n-5) + (84+63*(n-7)+11*(n-7)^2)*a(n-4) + (90+40*(n-7)+4*(n-7)^2)*a(n-3) + (30+ 6*(n-7))*a(n-2) - (n-2)*(n-1)*a(n-1). - Benedict W. J. Irwin, Sep 25 2016 D-finite with recurrence: n*a(n) = -a(n-1) + (2*n - 5)*a(n-2) + (4*n - 17)*a(n-3) + 3*(n-5)*a(n-4). - Vaclav Kotesovec, Sep 25 2016 MATHEMATICA Rest[CoefficientList[Series[(1+z(2+z)-Sqrt[-(1+z)(-1+z+z^2+3z^3)])/(2(1+z)), {z, 0, 30}], z]] (* Benedict W. J. Irwin, Sep 25 2016 *) PROG (Maxima) a(n):=sum(((sum(binomial(j, n-k-j)*binomial(k, j), j, 0, k))*binomial(n-k-2, k-1))/k, k, 1, n); CROSSREFS Sequence in context: A000693 A054178 A005833 * A001678 A346787 A113292 Adjacent sequences: A247159 A247160 A247161 * A247163 A247164 A247165 KEYWORD nonn AUTHOR Vladimir Kruchinin, Nov 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 16 07:19 EDT 2024. Contains 373423 sequences. (Running on oeis4.)