Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Jan 30 2020 21:29:17
%S 1,0,1,0,1,1,2,3,6,10,19,35,66,125,240,462,897,1750,3431,6756,13357,
%T 26499,52744,105292,210761,422928,850631,1714505,3462538,7005661,
%U 14198718,28823497,58600076,119306476,243224949,496475106,1014616271
%N G.f. 1-(2*x^3)/(-sqrt(-3*x^4-4*x^3-2*x^2+1)-x^2+1).
%F a(n) = sum(k=1..n, (sum(j=0..k, binomial(j,n-k-j)*binomial(k,j)) * binomial(n-k-2,k-1))/k).
%F D-finite with recurrence: (n-1)*n*a(n) = 6*(n-8)*(n-7)*a(n-7) + 2*(5+7*(n-7))*(n-7)*a(n-6) + (24+43*(n-7)+15*(n-7)^2)*a(n-5) + (84+63*(n-7)+11*(n-7)^2)*a(n-4) + (90+40*(n-7)+4*(n-7)^2)*a(n-3) + (30+ 6*(n-7))*a(n-2) - (n-2)*(n-1)*a(n-1). - _Benedict W. J. Irwin_, Sep 25 2016
%F D-finite with recurrence: n*a(n) = -a(n-1) + (2*n - 5)*a(n-2) + (4*n - 17)*a(n-3) + 3*(n-5)*a(n-4). - _Vaclav Kotesovec_, Sep 25 2016
%t Rest[CoefficientList[Series[(1+z(2+z)-Sqrt[-(1+z)(-1+z+z^2+3z^3)])/(2(1+z)), {z, 0, 30}], z]] (* _Benedict W. J. Irwin_, Sep 25 2016 *)
%o (Maxima)
%o a(n):=sum(((sum(binomial(j,n-k-j)*binomial(k,j),j,0,k))*binomial(n-k-2,k-1))/k,k,1,n);
%K nonn
%O 1,7
%A _Vladimir Kruchinin_, Nov 21 2014