login
A342012
Primorial deflation of the n-th colossally abundant number: the unique integer k such that A108951(k) = A004490(n).
7
2, 3, 6, 10, 20, 30, 42, 84, 132, 156, 312, 468, 780, 1020, 1140, 1380, 2760, 3480, 3720, 5208, 7812, 9324, 10332, 10836, 21672, 23688, 26712, 29736, 49560, 51240, 56280, 59640, 61320, 96360, 104280, 208560, 219120, 328680, 352440, 384120, 453960, 472680, 482040, 500760, 510120, 528840, 594360, 613080, 641160, 650520, 1301040
OFFSET
1,1
COMMENTS
In contrast to A329902, this sequence is monotonic, because each term is obtained from the previous, either by multiplying it by 2, or by "bumping" one [or hypothetically: two] of its prime factors one step up (i.e., replacing it with the next larger prime), and both operations are guaranteed to make the number larger.
LINKS
FORMULA
a(n) = A319626(A004490(n)) = A329900(A004490(n)).
a(n) = A005940(1+A342013(n)).
PROG
(PARI)
v073751 = readvec("b073751_to.txt");
A073751(n) = v073751[n];
A004490list(v073751) = { my(v=vector(#v073751)); v[1] = 2; for(n=2, #v, v[n] = v073751[n]*v[n-1]); (v); };
v004490 = A004490list(v073751);
A004490(n) = v004490[n];
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A319626(n) = (n / gcd(n, A064989(n)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 08 2021
STATUS
approved