Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 20 2022 05:25:49
%S 2,3,6,10,20,30,42,84,132,156,312,468,780,1020,1140,1380,2760,3480,
%T 3720,5208,7812,9324,10332,10836,21672,23688,26712,29736,49560,51240,
%U 56280,59640,61320,96360,104280,208560,219120,328680,352440,384120,453960,472680,482040,500760,510120,528840,594360,613080,641160,650520,1301040
%N Primorial deflation of the n-th colossally abundant number: the unique integer k such that A108951(k) = A004490(n).
%C In contrast to A329902, this sequence is monotonic, because each term is obtained from the previous, either by multiplying it by 2, or by "bumping" one [or hypothetically: two] of its prime factors one step up (i.e., replacing it with the next larger prime), and both operations are guaranteed to make the number larger.
%H Amiram Eldar, <a href="/A342012/b342012.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A319626(A004490(n)) = A329900(A004490(n)).
%F a(n) = A005940(1+A342013(n)).
%o (PARI)
%o v073751 = readvec("b073751_to.txt");
%o A073751(n) = v073751[n];
%o A004490list(v073751) = { my(v=vector(#v073751)); v[1] = 2; for(n=2,#v,v[n] = v073751[n]*v[n-1]); (v); };
%o v004490 = A004490list(v073751);
%o A004490(n) = v004490[n];
%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A319626(n) = (n / gcd(n, A064989(n)));
%o A342012(n) = A319626(A004490(n));
%Y Cf. A004490, A005940, A073751, A108951, A319626, A329900, A342010 [= A001222(a(n))], A342011, A342013.
%Y Cf. also A217867, A329902.
%K nonn
%O 1,1
%A _Antti Karttunen_, Mar 08 2021