OFFSET
1,3
FORMULA
a(n) = sum((-1)^h*binomial(n-4*h-1, ceiling(n/2)-1)*binomial(ceiling(n/2), h), h=0..floor((n-1)/4)).
a(n) ~ c * d^(n/2) / sqrt(n), where d = 3.610718613276039349818649008384058627465... is the root of the equation 16 + 8*d + 11 * d^2 - 4*d^3 = 0 and c = sqrt((39 + (4563 - 78*sqrt(78))^(1/3) + (39*(117 + 2*sqrt(78)))^(1/3))/(78*Pi)) = 0.5423866816763379517560447644... if n is even, c = sqrt(24/((-56 + (2*(65228 - 7347*sqrt(78)))^(1/3) + (2*(65228 + 7347*sqrt(78)))^(1/3))*Pi)) = 0.677435919213691192835873220... if n is odd. - Vaclav Kotesovec, May 01 2014, updated Mar 17 2024
EXAMPLE
a(4)=3: (1,3),(3,1),(2,2).
MATHEMATICA
Tr/@ Table[((-1)^h)*Binomial[n-4h-1, Ceiling[n/2]-1]*Binomial[Ceiling[n/2], h], {n, 32}, {h, 0, Floor[(n-1)/4]}] (* Wouter Meeussen, Feb 24 2013 *)
PROG
(Magma)
[&+[(-1)^h*Binomial(n-4*h-1, Ceiling(n/2)-1)*Binomial(Ceiling(n/2), h): h in [0..Floor((n-1)/4)]]: n in [1..40]]; // Bruno Berselli, Feb 26 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Shanzhen Gao, Feb 15 2013
EXTENSIONS
a(29) corrected by Bruno Berselli, Feb 26 2013
STATUS
approved