OFFSET
0,4
COMMENTS
Difference table:
0, 0, 1, 2, 3, 6, 10, 20, 33, 66, ... = a(n)
0, 1, 1, 1, 3, 4, 10, 13, 33, 43, ... = b(n)
1, 0, 0, 2, 1, 6, 3, 20, 10, 66, ... = c(n).
c(2n+1)=a(2n+1), c(2n+2)=a(2n).
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,3,0,1).
FORMULA
a(2n) = A006190(n), a(2n+1) = 2*a(2n).
G.f.: x^2*(1 + 2*x) / (1 - 3*x^2 - x^4). - Colin Barker, Jun 14 2018
MATHEMATICA
Nest[Append[#, 3 #[[-2]] + #[[-4]]] &, {0, 0, 1, 2}, 33] (* or *)
CoefficientList[Series[x^2*(1 + 2 x)/(1 - 3 x^2 - x^4), {x, 0, 36}], x] (* Michael De Vlieger, Jun 14 2018 *)
LinearRecurrence[{0, 3, 0, 1}, {0, 0, 1, 2}, 41] (* Robert G. Wilson v, Jul 10 2018 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + 2*x) / (1 - 3*x^2 - x^4) + O(x^40))) \\ Colin Barker, Jun 14 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 14 2018
STATUS
approved