login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305889
a(n) = 3*a(n-2) + a(n-4), a(0)=a(1)=0, a(2)=1, a(3)=2.
1
0, 0, 1, 2, 3, 6, 10, 20, 33, 66, 109, 218, 360, 720, 1189, 2378, 3927, 7854, 12970, 25940, 42837, 85674, 141481, 282962, 467280, 934560, 1543321, 3086642, 5097243, 10194486, 16835050, 33670100, 55602393, 111204786, 183642229, 367284458, 606529080
OFFSET
0,4
COMMENTS
Difference table:
0, 0, 1, 2, 3, 6, 10, 20, 33, 66, ... = a(n)
0, 1, 1, 1, 3, 4, 10, 13, 33, 43, ... = b(n)
1, 0, 0, 2, 1, 6, 3, 20, 10, 66, ... = c(n).
c(2n+1)=a(2n+1), c(2n+2)=a(2n).
FORMULA
a(2n) = A006190(n), a(2n+1) = 2*a(2n).
G.f.: x^2*(1 + 2*x) / (1 - 3*x^2 - x^4). - Colin Barker, Jun 14 2018
MATHEMATICA
Nest[Append[#, 3 #[[-2]] + #[[-4]]] &, {0, 0, 1, 2}, 33] (* or *)
CoefficientList[Series[x^2*(1 + 2 x)/(1 - 3 x^2 - x^4), {x, 0, 36}], x] (* Michael De Vlieger, Jun 14 2018 *)
LinearRecurrence[{0, 3, 0, 1}, {0, 0, 1, 2}, 41] (* Robert G. Wilson v, Jul 10 2018 *)
PROG
(PARI) concat(vector(2), Vec(x^2*(1 + 2*x) / (1 - 3*x^2 - x^4) + O(x^40))) \\ Colin Barker, Jun 14 2018
CROSSREFS
Cf. A006190 (bisection of a(n),b(n) and, from the second 0,c(n)).
Cf. A003688(n+1) (from the third 1, bisection of b(n)).
Sequence in context: A050291 A324739 A214002 * A135452 A077027 A030436
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 14 2018
STATUS
approved