login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346788
Product over all partitions lambda of n of the product of distinct parts in lambda.
1
1, 1, 2, 6, 48, 1440, 414720, 2090188800, 1155790798848000, 226483217146419609600000, 302971317675145105975227187200000000, 37917003542135076706761224377027811868672000000000000, 45800346382799680410294841758069930049013501333211737122406400000000000000000
OFFSET
0,3
LINKS
FORMULA
a(n) = A230053(n) for n <= 6.
MAPLE
a:= n-> mul(i, i=map(x-> {x[]}[], combinat[partition](n))):
seq(a(n), n=0..12);
MATHEMATICA
a[n_] := Times @@ Times @@@ Union /@ IntegerPartitions[n];
a /@ Range[0, 20] (* Jean-François Alcover, Aug 09 2021 *)
PROG
(PARI) a(n) = vecprod(apply(x->vecprod(Set(x)), partitions(n))); \\ Michel Marcus, Aug 04 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 03 2021
STATUS
approved