login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209422
Triangle of coefficients of polynomials v(n,x) jointly generated with A209415; see the Formula section.
3
1, 3, 5, 1, 9, 2, 1, 15, 6, 2, 1, 25, 13, 7, 2, 1, 41, 28, 16, 8, 2, 1, 67, 56, 38, 19, 9, 2, 1, 109, 109, 82, 49, 22, 10, 2, 1, 177, 206, 173, 112, 61, 25, 11, 2, 1, 287, 382, 352, 252, 146, 74, 28, 12, 2, 1, 465, 697, 701, 543, 347, 184, 88, 31, 13, 2, 1, 753, 1256, 1368, 1144, 784, 459, 226, 103, 34, 14, 2
OFFSET
1,2
COMMENTS
For a discussion and guide to related arrays, see A208510.
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + 3*t + (5 + x)*t^2 + ... . - G. C. Greubel, Jan 03 2018
EXAMPLE
First five rows:
1;
3;
5, 1;
9, 2, 1;
15, 6, 2, 1;
First three polynomials v(n,x): 1, 3, 5 + x.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209421 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209422 *)
CoefficientList[CoefficientList[Series[(1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x]// Flatten (* G. C. Greubel, Jan 03 2018 *)
CROSSREFS
Sequence in context: A197326 A235605 A212695 * A361944 A320386 A112411
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Mar 09 2012
STATUS
approved