login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle of coefficients of polynomials v(n,x) jointly generated with A209415; see the Formula section.
3

%I #18 Jan 05 2018 02:55:46

%S 1,3,5,1,9,2,1,15,6,2,1,25,13,7,2,1,41,28,16,8,2,1,67,56,38,19,9,2,1,

%T 109,109,82,49,22,10,2,1,177,206,173,112,61,25,11,2,1,287,382,352,252,

%U 146,74,28,12,2,1,465,697,701,543,347,184,88,31,13,2,1,753,1256,1368,1144,784,459,226,103,34,14,2

%N Triangle of coefficients of polynomials v(n,x) jointly generated with A209415; see the Formula section.

%C For a discussion and guide to related arrays, see A208510.

%H G. C. Greubel, <a href="/A209422/b209422.txt">Table of n, a(n) for the first 100 rows, flattened</a>

%F u(n,x) = x*u(n-1,x) + v(n-1,x),

%F v(n,x) = u(n-1,x) + v(n-1,x) + 1,

%F where u(1,x)=1, v(1,x)=1.

%F G.f.: (1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)) = 1 + 3*t + (5 + x)*t^2 + ... . - _G. C. Greubel_, Jan 03 2018

%e First five rows:

%e 1;

%e 3;

%e 5, 1;

%e 9, 2, 1;

%e 15, 6, 2, 1;

%e First three polynomials v(n,x): 1, 3, 5 + x.

%t u[1, x_] := 1; v[1, x_] := 1; z = 16;

%t u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];

%t v[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;

%t Table[Expand[u[n, x]], {n, 1, z/2}]

%t Table[Expand[v[n, x]], {n, 1, z/2}]

%t cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];

%t TableForm[cu]

%t Flatten[%] (* A209421 *)

%t Table[Expand[v[n, x]], {n, 1, z}]

%t cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];

%t TableForm[cv]

%t Flatten[%] (* A209422 *)

%t CoefficientList[CoefficientList[Series[(1 + (1 - x)*t - t^2)/((1 - t)*(1 - (x + 1)*t + (x - 1)*t^2)), {t, 0, 10}], t], x]// Flatten (* _G. C. Greubel_, Jan 03 2018 *)

%Y Cf. A209421, A208510.

%K nonn,tabf

%O 1,2

%A _Clark Kimberling_, Mar 09 2012