OFFSET
1,2
COMMENTS
Column 1: Fibonacci numbers (A000045).
For a discussion and guide to related arrays, see A208510.
Triangle given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-2), T(1,0) = 1, T(2,0) = T(2,1) = 2, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 26 2012
G.f.: x*(1 + x)/(1 - x - x^2 - 2*y*x + y^2*x^2). - G. C. Greubel, Jan 03 2018
EXAMPLE
First five rows:
1;
2, 2;
3, 6, 3;
5, 14, 13, 4;
8, 30, 41, 24, 5;
First three polynomials v(n,x): 1, 2 + 2x, 3 + 6x + 3x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209419 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209420 *)
CoefficientList[CoefficientList[Series[x*(1 + x)/(1 - x - x^2 - 2*y*x + y^2*x^2), {x, 0, 10}, {y, 0, 10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 09 2012
STATUS
approved