login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294033
Triangle read by rows, expansion of exp(x*z)*z*(tanh(z) + sech(z)), T(n, k) for n >= 1 and 0 <= k <= n-1.
1
1, 2, 2, -3, 6, 3, -8, -12, 12, 4, 25, -40, -30, 20, 5, 96, 150, -120, -60, 30, 6, -427, 672, 525, -280, -105, 42, 7, -2176, -3416, 2688, 1400, -560, -168, 56, 8, 12465, -19584, -15372, 8064, 3150, -1008, -252, 72, 9, 79360, 124650, -97920, -51240, 20160, 6300, -1680, -360, 90, 10, -555731, 872960, 685575, -359040, -140910, 44352, 11550, -2640, -495, 110, 11
OFFSET
1,2
FORMULA
T(n, k) = (k+1)*binomial(n,k+1)*2^(n-k-1)*(Euler(n-k-1, 1/2) + Euler(n-k-1, 1))) for 0 <= k <= n-2.
T(n, k) is the coefficient of x^k of the polynomial p(n) = n*Sum_{k=1..n} binomial(n-1, k-1)*L(k-1)*x^(n-k) and L(n) = (-1)^binomial(n,2)*A000111(n). In particular n divides T(n, k).
EXAMPLE
Triangle starts:
[1][ 1]
[2][ 2, 2]
[3][ -3, 6, 3]
[4][ -8, -12, 12, 4]
[5][ 25, -40, -30, 20, 5]
[6][ 96, 150, -120, -60, 30, 6]
[7][-427, 672, 525, -280, -105, 42, 7]
MAPLE
gf := exp(x*z)*z*(tanh(z)+sech(z)):
s := n -> n!*coeff(series(gf, z, n+2), z, n):
C := n -> PolynomialTools:-CoefficientList(s(n), x):
ListTools:-FlattenOnce([seq(C(n), n=1..7)]);
# Alternatively:
T := (n, k) -> `if`(n = k+1, n,
(k+1)*binomial(n, k+1)*2^(n-k-1)*(euler(n-k-1, 1/2)+euler(n-k-1, 1))):
for n from 1 to 7 do seq(T(n, k), k=0..n-1) od;
MATHEMATICA
L[0] := 1; L[n_] := (-1)^Binomial[n, 2] 2 Abs[PolyLog[-n, -I]];
p[n_] := n Sum[Binomial[n - 1, k - 1] L[k - 1] x^(n - k), {k, 0, n}];
Table[CoefficientList[p[n], x], {n, 1, 11}] // Flatten
CROSSREFS
T(n, 0) = signed A065619. Row sums of abs(T(n,k)) = A231179.
A003506 (m=1), this seq. (m=2), A294034 (m=3).
Sequence in context: A209420 A317449 A222310 * A376168 A254827 A193862
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Oct 24 2017
STATUS
approved