login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294036
a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], 1).
2
1, 4, 16, 64, 280, 1504, 9856, 70144, 498136, 3449440, 23506816, 160566784, 1115048896, 7905796864, 56994288640, 414928113664, 3034880623576, 22255957312864, 163667338903936, 1208070406612480, 8955840250934080, 66678657938510080
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x^4 + y^4 + z^4 + t^4 + 4*x*y*z*t)). - Gheorghe Coserea, Aug 04 2018
FORMULA
Let H(m, n, x) = m^n*hypergeom([(k-n)/m for k=0..m-1], [1 for k=0..m-2], x) then a(n) = H(4, n, 1).
a(n) ~ 2^(3*n + 2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Nov 02 2017
MAPLE
T := (m, n, x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x):
lprint(seq(simplify(T(4, n, 1)), n=0..39));
MATHEMATICA
Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, 1], {n, 0, 30}] (* Vaclav Kotesovec, Nov 02 2017 *)
CROSSREFS
H(1, n, 1) = A000007(n), H(2, n, 1) = A000984(n), H(3, n, 1) = A006077(n), H(4, n, 1) = this seq., H(1, n, -1) = A000079(n), H(2, n, -1) = A098335(n), H(3, n, -1) = A294035(n), H(4, n, -1) = A294037(n).
Sequence in context: A142872 A113995 A212443 * A097679 A158778 A227313
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 02 2017
STATUS
approved