login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], 1).
2

%I #13 Aug 06 2018 05:34:31

%S 1,4,16,64,280,1504,9856,70144,498136,3449440,23506816,160566784,

%T 1115048896,7905796864,56994288640,414928113664,3034880623576,

%U 22255957312864,163667338903936,1208070406612480,8955840250934080,66678657938510080

%N a(n) = 4^n*hypergeom([-n/4, (1-n)/4, (2-n)/4, (3-n)/4], [1, 1, 1], 1).

%C Diagonal of rational function 1/(1 - (x^4 + y^4 + z^4 + t^4 + 4*x*y*z*t)). - _Gheorghe Coserea_, Aug 04 2018

%F Let H(m, n, x) = m^n*hypergeom([(k-n)/m for k=0..m-1], [1 for k=0..m-2], x) then a(n) = H(4, n, 1).

%F a(n) ~ 2^(3*n + 2) / (Pi*n)^(3/2). - _Vaclav Kotesovec_, Nov 02 2017

%p T := (m,n,x) -> m^n*hypergeom([seq((k-n)/m, k=0..m-1)], [seq(1, k=0..m-2)], x):

%p lprint(seq(simplify(T(4,n,1)), n=0..39));

%t Table[4^n * HypergeometricPFQ[{-n/4, (1-n)/4, (2-n)/4, (3-n)/4}, {1, 1, 1}, 1], {n, 0, 30}] (* _Vaclav Kotesovec_, Nov 02 2017 *)

%Y H(1, n, 1) = A000007(n), H(2, n, 1) = A000984(n), H(3, n, 1) = A006077(n), H(4, n, 1) = this seq., H(1, n, -1) = A000079(n), H(2, n, -1) = A098335(n), H(3, n, -1) = A294035(n), H(4, n, -1) = A294037(n).

%K nonn

%O 0,2

%A _Peter Luschny_, Nov 02 2017