login
A294039
a(n) = e*Gamma(2*n,1).
3
2, 16, 326, 13700, 986410, 108505112, 16926797486, 3554627472076, 966858672404690, 330665665962404000, 138879579704209680022, 70273067330330098091156, 42163840398198058854693626, 29599015959535037315994925480, 24034400959142450300587879489790
OFFSET
1,1
LINKS
FORMULA
From Robert Israel, Nov 14 2017: (Start)
a(n) = (2*n-1)!*Sum_{k=0..2*n-1} 1/k!.
a(n+1) = 2*n*(2*n+1)*a(n) + 2*n+2. (End)
MAPLE
a := n -> exp(1)*GAMMA(2*n, 1):
seq(simplify(a(n)), n=1..15);
# Alternate:
f:= gfun:-rectoproc({a(n+1) = 2*n*(2*n+1)*a(n) + 2*n+2, a(1) = 2}, a(n), remember):
map(f, [$1..20]); # Robert Israel, Nov 14 2017
MATHEMATICA
Array[E Gamma[2 #, 1] &, 15] (* Michael De Vlieger, Nov 14 2017 *)
CROSSREFS
Bisection of A000522. Cf. A294040.
Sequence in context: A171212 A282392 A336522 * A009100 A009109 A268560
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 14 2017
STATUS
approved