login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A065619
Expansion of e.g.f. x * (tan(x) + sec(x)).
11
1, 2, 3, 8, 25, 96, 427, 2176, 12465, 79360, 555731, 4245504, 35135945, 313155584, 2990414715, 30460116992, 329655706465, 3777576173568, 45692713833379, 581777702256640, 7777794952988025, 108932957168730112, 1595024111042171723, 24370173276164456448
OFFSET
1,2
COMMENTS
a(n) is the number of down-up permutations w on [n+1] such that w_2 = 1. For example, a(3)=3 counts 2143, 3142, 4132. - David Callan, Oct 25 2004
A signed variant of this sequence, prefaced with an 0, is column 1 of the inverse of triangle A178616. - Gary W. Adamson, May 30 2010
a(n) is the number of ranked unlabeled binary tree shapes compatible with the binary perfect phylogeny (n,2). - Noah A Rosenberg, Jun 03 2022
LINKS
S. Kitaev and T. Mansour, Simultaneous avoidance of generalized patterns, arXiv:math/0205182 [math.CO], 2002.
H. D. Nguyen and D. Taggart, Mining the OEIS: Ten Experimental Conjectures, 2013. Mentions this sequence. - From N. J. A. Sloane, Mar 16 2014
J. A. Palacios, A. Bhaskar, F. Disanto and N. A. Rosenberg, Enumeration of binary trees compatible with a perfect phylogeny, J. Math. Biol. 84 (2022), 54.
FORMULA
E.g.f.: x*(tan(x)+sec(x)).
a(n) = n*A000111(n-1). - R. J. Mathar, Nov 27 2006
a(n) = n*2^(n-1)*|E_{n-1}(1/2)+E_{n-1}(1)| for n > 1; E_{n}(x) Euler polynomial. - Peter Luschny, Nov 25 2010
E.g.f.: x*(tan(x)+sec(x))=x+x^2/U(0);U(k)=4k+1-x/(2-x/(4k+3+x/(2+x/U(k+1))));(continued fraction). - Sergei N. Gladkovskii, Nov 14 2011
E.g.f.: x*( tan(x) + sec(x) )= x + 2*x^2/(U(0)-x) where U(k)= 4*k+2 - x^2/U(k+1);(continued fraction, 1-step). - Sergei N. Gladkovskii, Nov 07 2012
a(n) = (n + 1)!*Re([x^n](1 + i^((n - 1)*n)*(2 - 2*i)/(exp(x) + i))), assuming offset = 0. - Peter Luschny, Aug 09 2021
a(n) = 2*n*i^n*PolyLog(1 - n, -i) for n >= 2. - Peter Luschny, Aug 17 2021
MAPLE
A065619 := n -> `if`(n=1, 1, 2^(n-1)*abs(euler(n-1, 1/2)+euler(n-1, 1))*n): # Peter Luschny, Nov 25 2010
# Alternatively (after Alois P. Heinz):
b := proc(u, o) option remember;
`if`(u + o = 0, 1, add(b(o - 1 + j, u - j), j = 1..u)) end:
a := n -> n*b(n-1, 0): seq(a(n), n = 1..24); # Peter Luschny, Oct 27 2017
MATHEMATICA
a[1] = 1; a[n_] := 2^(n-1)*Abs[EulerE[n - 1, 1/2] + EulerE[n - 1, 1]]*n; Array[a, 24] (* Jean-François Alcover, Nov 05 2017, after Peter Luschny *)
Table[Re[2 n I^n PolyLog[1 - n, -I]], {n, 1, 19}] (* Peter Luschny, Aug 17 2021 *)
PROG
(PARI) {a(n) = if( n<0, 0 , n! * polcoeff( x * (tan(x + x * O(x^n)) + 1 / cos(x + x * O(x^n))), n))}
(PARI)
x='x+O('x^66);
egf=x*(tan(x)+1/cos(x));
Vec(serlaplace(egf))
/* Joerg Arndt, May 28 2012 */
(Sage) # Algorithm of L. Seidel (1877)
def A065619_list(n) : # starts with a(0) = 0.
R = []; A = {-1:1, 0:0}; k = 0; e = 1
for i in (0..n) :
Am = 0; A[k + e] = 0; e = -e
for j in (0..i) : Am += A[k]; A[k] = Am; k += e
R.append(A[-i//2] if i%2 == 0 else A[i//2])
return R
A065619_list(22) # Peter Luschny, May 27 2012
(Python)
from itertools import accumulate
def A065619(n):
if n <= 2: return n
blist = (0, 1)
for _ in range(n-2):
blist = tuple(accumulate(reversed(blist), initial=0))
return blist[-1]*n # Chai Wah Wu, Apr 25 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 03 2001
STATUS
approved