login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A358280
a(n) = Sum_{d|n} (d-1)!.
2
1, 2, 3, 8, 25, 124, 721, 5048, 40323, 362906, 3628801, 39916930, 479001601, 6227021522, 87178291227, 1307674373048, 20922789888001, 355687428136444, 6402373705728001, 121645100409194912, 2432902008176640723, 51090942171713068802, 1124000727777607680001
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} (k-1)! * x^k/(1 - x^k).
If p is prime, a(p) = 1 + (p-1)!.
MATHEMATICA
a[n_] := DivisorSum[n, (# - 1)! &]; Array[a, 23] (* Amiram Eldar, Aug 30 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d-1)!);
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, (k-1)!*x^k/(1-x^k)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 08 2022
STATUS
approved