The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A321875 a(n) = Sum_{d|n} d*d!. 1
 1, 5, 19, 101, 601, 4343, 35281, 322661, 3265939, 36288605, 439084801, 5748023639, 80951270401, 1220496112085, 19615115520619, 334764638530661, 6046686277632001, 115242726706374263, 2311256907767808001, 48658040163569088701, 1072909785605898275299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Inverse MÃ¶bius transform of A001563. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..448 N. J. A. Sloane, Transforms FORMULA G.f.: Sum_{k>=1} k*k!*x^k/(1 - x^k). L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k!)) = Sum_{n>=1} a(n)*x^n/n. a(n) = Sum_{d|n} A001563(d). MATHEMATICA Table[Sum[d d!, {d, Divisors[n]}], {n, 21}] nmax = 21; Rest[CoefficientList[Series[Sum[k k! x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]] nmax = 21; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]] PROG (PARI) a(n) = sumdiv(n, d, d*d!); \\ Michel Marcus, Nov 20 2018 (MAGMA) m:=25; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[k*Factorial(k)*x^k/(1 - x^k): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 20 2018 (Sage) s = sum(k*factorial(k)*x^k/(1-x^k) for k in (1..24)); (s/x).series(x, 21).coefficients(x, sparse=false) # Peter Luschny, Nov 21 2018 CROSSREFS Cf. A000142, A001563, A062363, A107895. Sequence in context: A331336 A146144 A162292 * A005165 A071828 A280067 Adjacent sequences:  A321872 A321873 A321874 * A321876 A321877 A321878 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Nov 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 15:41 EDT 2020. Contains 333276 sequences. (Running on oeis4.)