login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321876
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Product_{j>=1} 1/(1 - x^j)^sigma_k(j).
3
1, 1, 1, 1, 1, 3, 1, 1, 4, 5, 1, 1, 6, 8, 11, 1, 1, 10, 16, 21, 17, 1, 1, 18, 38, 52, 39, 34, 1, 1, 34, 100, 156, 128, 92, 52, 1, 1, 66, 278, 526, 534, 373, 170, 94, 1, 1, 130, 796, 1896, 2546, 2014, 913, 360, 145, 1, 1, 258, 2318, 7102, 13074, 12953, 6796, 2399, 667, 244
OFFSET
0,6
LINKS
FORMULA
G.f. of column k: Product_{i>=1, j>=1} 1/(1 - x^(i*j))^(j^k).
G.f. of column k: exp(Sum_{j>=1} sigma_(k+1)(j)*x^j/(j*(1 - x^j))).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
3, 4, 6, 10, 18, 34, ...
5, 8, 16, 38, 100, 278, ...
11, 21, 52, 156, 526, 1896, ...
17, 39, 128, 534, 2546, 13074, ...
MATHEMATICA
Table[Function[k, SeriesCoefficient[Product[1/(1 - x^j)^DivisorSigma[k, j], {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
Table[Function[k, SeriesCoefficient[Exp[Sum[DivisorSigma[k + 1, j] x^j/(j (1 - x^j)), {j, 1, n}]], {x, 0, n}]][i - n], {i, 0, 10}, {n, 0, i}] // Flatten
CROSSREFS
Main diagonal gives A319647.
Cf. A321877.
Sequence in context: A104730 A249488 A275204 * A131238 A133380 A343168
KEYWORD
nonn,tabl
AUTHOR
Ilya Gutkovskiy, Nov 20 2018
STATUS
approved