login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301545
Expansion of Product_{k>=1} 1/(1 - x^k)^(sigma_7(k)).
10
1, 1, 130, 2318, 27216, 387594, 5560934, 70939556, 876220362, 10760122935, 128556693118, 1491396412267, 16958961282303, 189514843653171, 2079577812522100, 22430047600047542, 238222882236692332, 2493975995373397906, 25753455308417881148, 262500213585285366039
OFFSET
0,3
LINKS
FORMULA
a(n) ~ exp(3^(17/9) * Pi^(8/9) * (Zeta(9)/5)^(1/9) * n^(8/9) / 2^(7/3) - Zeta'(-7)/2) * (Zeta(9)/(15*Pi))^(241/4320) / (3 * 2^(241/1440) * n^(2401/4320)).
G.f.: exp(Sum_{k>=1} sigma_8(k)*x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Oct 26 2018
MATHEMATICA
nmax = 30; CoefficientList[Series[Product[1/(1-x^k)^DivisorSigma[7, k], {k, 1, nmax}], {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A278658 A254924 A185584 * A229329 A262108 A250212
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 23 2018
STATUS
approved