login
A358279
a(n) = Sum_{d|n} (d-1)! * d^(n/d).
1
1, 3, 7, 29, 121, 747, 5041, 40433, 362935, 3629433, 39916801, 479006531, 6227020801, 87178326609, 1307674371487, 20922790212353, 355687428096001, 6402373709021811, 121645100408832001, 2432902008212950169, 51090942171709691335, 1124000727778046766849
OFFSET
1,2
FORMULA
G.f.: Sum_{k>0} k! * x^k/(1 - k * x^k).
If p is prime, a(p) = 1 + p!.
MATHEMATICA
a[n_] := DivisorSum[n, (# - 1)! * #^(n/#) &]; Array[a, 22] (* Amiram Eldar, Aug 30 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d-1)!*d^(n/d));
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=1, N, k!*x^k/(1-k*x^k)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Nov 08 2022
STATUS
approved