login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173280
First column of the matrix power A173279(.,.)^j in the limit j->infinity.
3
1, 1, 3, 7, 29, 129, 757, 5185, 41155, 368351, 3671635, 40295943, 482758111, 6268066531, 87668492115, 1314023850727, 21011431917453, 357014074280785, 6423561495057421, 122004755658629081, 2439367774898883497, 51213663674167659301, 1126452985959434543237
OFFSET
0,3
COMMENTS
We can generalize A173279 to other matrices derived from some sequence S by Smat(n,k) := S(n-r*k), r >= 2,
and find that they define sequences B(x) via S(x)= B(X)/B(x^r), b(n) = Sum_{t=0..n, n-t == 0 (mod r)} S(t)*B_{(n-t)/r}.
The sequence here is the case of S=A000142 and r=2.
LINKS
Jean-François Alcover, Table of n, a(n) for n = 0..100
FORMULA
A000142(x) = A(x)/A(x^2), where A(x) and A000142(x) are the o.g.f.'s associated with A000142 and this sequence here.
Sum_{n>=0} 1/a(n) = 2.519966353393413186683398448854995831308...
a(n) = (A173279^j)(n,0).
a(n) = Sum_{t=0..n, n-t even} t!*a_{(n-t)/2}. - R. J. Mathar, Feb 22 2010
MAPLE
A173280 := proc(n) option remember; local a, l; if n = 0 then 1; else a :=0 ; for l from n to 0 by -2 do a := a+ l!*procname((n-l)/2) : end do ; a ; end if; end proc:
seq(A173280(n), n=0..60) ; # R. J. Mathar, Feb 22 2010
MATHEMATICA
A173280[n_] := A173280[n] = Module[{a, l}, If[n == 0, 1, a = 0; For[l = n, l >= 0, l -= 2, a = a + l!*A173280[(n-l)/2]]; a]];
Table[A173280[n], {n, 0, 100}] (* Jean-François Alcover, Aug 02 2023, after R. J. Mathar *)
CROSSREFS
Cf. A000142.
Sequence in context: A358389 A358279 A217576 * A141477 A211371 A361436
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Feb 14 2010
EXTENSIONS
Extended, and invalid comment on convergence to e removed, by R. J. Mathar, Feb 22 2010
Index of B in the convolution formula in the comment corrected by R. J. Mathar, Mar 23 2010
STATUS
approved