login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A333392
a(0) = 1; thereafter a(n) = 2^(prime(n)-1) + Sum_{k=1..n} 2^(prime(n)-prime(k)).
1
1, 3, 7, 29, 117, 1873, 7493, 119889, 479557, 7672913, 491066433, 1964265733, 125713006913, 2011408110609, 8045632442437, 128730119078993, 8238727621055553, 527278567747555393, 2109114270990221573, 134983313343374180673, 2159733013493986890769, 8638932053975947563077
OFFSET
0,2
FORMULA
a(n) = floor(c * 2^prime(n)) for n > 0, where c = 0.91468250985... = 1/2 + A051006.
EXAMPLE
a(7) = 119889 (in base 10) = 11101010001010001 (in base 2).
||| | | | | |
123 5 7 1113 17
MATHEMATICA
a[0] = 1; a[n_] := 2^(Prime[n] - 1) + Sum[2^(Prime[n] - Prime[k]), {k, 1, n}]; Table[a[n], {n, 0, 21}]
PROG
(PARI) a(n) = if (n==0, 1, 2^(prime(n)-1) + sum(k=1, n, 2^(prime(n)-prime(k)))); \\ Michel Marcus, Mar 18 2020
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Mar 18 2020
STATUS
approved