login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176962
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=2, k=-1 and l=1.
1
1, 2, 3, 8, 25, 87, 317, 1190, 4563, 17797, 70399, 281813, 1139659, 4649403, 19112963, 79096156, 329258425, 1377798891, 5792421109, 24454224311, 103631241913, 440674939193, 1879769835969, 8041447249927, 34490981798189
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(11*n-13)*a(n-2) +3*(n-6)*a(n-3) +12*(-n+4)*a(n-4) +4*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*2-2+1=3. a(3)=2*1*3-2+2^2-1+1=8. a(4)=2*1*8-2+2*2*3-2+1=25.
MAPLE
l:=1: : k := -1 : m:=2:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176959.
Sequence in context: A277040 A009224 A171199 * A065619 A243963 A111121
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 29 2010
STATUS
approved