OFFSET
1,3
COMMENTS
The ratio a(n+1)/a(n) approaches 10 for even n and 2/5 for odd n as n->infinity.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,4,-4).
FORMULA
From R. J. Mathar, Apr 30 2010: (Start)
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3).
G.f.: x*(1 - x + 2*x^2)/( (1-x)*(1+2*x)*(1-2*x) ). (End)
a(n) = A087231(n), n > 2. - R. J. Mathar, May 03 2010
a(n+1) = 2*A096773(n), n > 0. - Yosu Yurramendi, Dec 30 2016
a(2n-1) = (A083597(n-1) + A000302(n-1))/2, a(2n) = (A083597(n-1) - A000302(n-1))/2, n > 0. - Yosu Yurramendi, Mar 04 2017
a(n+2) = 4*a(n) + 2, a(1) = 1, a(2) = 0, n > 0. - Yosu Yurramendi, Mar 07 2017
a(n) = (-16 + (9 - (-1)^n) * 2^(n - (-1)^n))/24. - Loren M. Pearson, Dec 28 2019
E.g.f.: (3*exp(2*x) - 4*exp(x) + 3 - 2*exp(-2*x))/6. - G. C. Greubel, Dec 28 2019
a(n) = (2^n*5^(n mod 2) - 4)/6. - Heinz Ebert, Jun 29 2021
MAPLE
seq( (3*2^(n-1) -(-2)^n -2)/3, n=1..30); # G. C. Greubel, Dec 28 2019
MATHEMATICA
a[n_]:= a[n]= 2^(n-1)*If[n==1, 1, a[n-1]/2 +(-1)^(n-1)*Sqrt[(5 +4*(-1)^(n-1) )]/2]; Table[a[n], {n, 30}]
LinearRecurrence[{1, 4, -4}, {1, 0, 6}, 30] (* G. C. Greubel, Dec 28 2019 *)
PROG
(PARI) vector(30, n, (3*2^(n-1) -(-2)^n -2)/3 ) \\ G. C. Greubel, Dec 28 2019
(Magma) [(3*2^(n-1) -(-2)^n -2)/3: n in [1..30]]; // G. C. Greubel, Dec 28 2019
(Sage) [(3*2^(n-1) -(-2)^n -2)/3 for n in (1..30)] # G. C. Greubel, Dec 28 2019
(GAP) List([1..30], n-> (3*2^(n-1) -(-2)^n -2)/3); # G. C. Greubel, Dec 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Apr 29 2010
STATUS
approved