login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176964
Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=3, k=-1 and l=1.
1
1, 3, 5, 17, 61, 245, 1021, 4405, 19453, 87589, 400541, 1855493, 8689213, 41068965, 195659357, 938623045, 4530198013, 21982331237, 107178047773, 524805028357, 2579684059581, 12724878633765, 62968424313821, 312503657989317
OFFSET
0,2
FORMULA
G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-1, l=1).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +(7*n-5)*a(n-2) +3*(5*n-18)*a(n-3) +24*(-n+4)*a(n-4) +8*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
EXAMPLE
a(2)=2*1*3-2+1=5. a(3)=2*1*5-2+3^2-1+1=17. a(4)=2*1*17-2+2*3*5-2+1=61.
MAPLE
l:=1: : k := -1 : m:=3:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A176962.
Sequence in context: A049540 A097144 A219108 * A085749 A281623 A350142
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Apr 29 2010
STATUS
approved