login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176591
Bernoulli denominators A141056(n), with the exception a(1)=1.
11
1, 1, 6, 2, 30, 2, 42, 2, 30, 2, 66, 2, 2730, 2, 6, 2, 510, 2, 798, 2, 330, 2, 138, 2, 2730, 2, 6, 2, 870, 2, 14322, 2, 510, 2, 6, 2, 1919190, 2, 6, 2, 13530, 2, 1806, 2, 690, 2, 282, 2, 46410, 2, 66, 2, 1590, 2, 798, 2, 870, 2, 354, 2, 56786730, 2, 6, 2, 510, 2, 64722, 2, 30, 2, 4686, 2, 140100870, 2, 6, 2, 30, 2
OFFSET
0,3
COMMENTS
These are also the denominators of a sequence generated by inverse binomial transform of a modified Bernoulli sequence described in (with numerators in) A176328.
LINKS
FORMULA
a(n) = A141056(n), n <> 1.
a(n) = A027760(n), n>1.
a(2n) = A002445(n), a(2n+1)= A040000(n).
MAPLE
read("transforms") ; evb := [1, 0, seq(bernoulli(n), n=2..50)] ; BINOMIALi(evb) ; apply(denom, %) ; # R. J. Mathar, Dec 01 2010
seq(denom((bernoulli(i, 1)+bernoulli(i, 2))/2), i=0..50); # Peter Luschny, Jun 17 2012
MATHEMATICA
a[n_] := If[OddQ[n], 2, BernoulliB[n] // Denominator]; a[1] = 1; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 29 2012 *)
Join[{1, 1}, BernoulliB[Range[2, 80]]/.(0->1/2)//Denominator] (* Harvey P. Dale, Dec 31 2018 *)
PROG
(PARI) A176591(n) = { my(p=1); if(n>1, fordiv(n, d, my(r=d+1); if(isprime(r), p = p*r))); return(p); }; \\ Antti Karttunen, Dec 20 2018, after code in A141056
CROSSREFS
Sequence in context: A305874 A176965 A084249 * A362989 A191703 A096039
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Apr 21 2010
EXTENSIONS
More terms from Antti Karttunen, Dec 20 2018
STATUS
approved