OFFSET
3,2
COMMENTS
See A228708 for further information.
LINKS
J. Noonan and D. Zeilberger, [math/9808080] The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns. Also Adv. in Appl. Math. 17 (1996), no. 4, 381--407. MR1422065 (97j:05003).
FORMULA
T(n, k) = C(2n-k-1, n) - C(2n-k-1, n+3) + C(2n-2k-2, n-k-4) - C(2n-2k-2, n-k-1) + C(2n-2k-3, n-k-4) - C(2n-2k-3, n-k-2).
T(n, n-2) = n-2, T(n, k) = T(n, k+1) + T(n-1, k-1) + T(n-k, 2).
EXAMPLE
Full triangle begins:
0
0,0
0,0,0
1,1,0,0
6,6,2,0,0
27,27,12,3,0,0
110,110,55,19,4,0,0
429,429,229,91,27,5,0,0
1638,1638,912,393,136,36,6,0,0
6188,6188,3549,1614,612,191,46,7,0,0
23256,23256,13636,6447,2601,897,257,57,8,0,0
...
PROG
(PARI) for(n=1, 15, for(k=1, n-2, print1(binomial(2*n-k-1, n)-binomial(2*n-k-1, n+3)+binomial(2*n-2*k-2, n-k-4)-binomial(2*n-2*k-2, n-k-1)+binomial(2*n-2*k-3, n-k-4)-binomial(2*n-2*k-3, n-k-2)", ")))
CROSSREFS
KEYWORD
AUTHOR
Ralf Stephan, May 21 2003
STATUS
approved