login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084249
Triangle T(n,k) read by rows: permutations on 123...n with one abc pattern and no aj pattern with j<=k, n>2, k<n-1.
3
1, 6, 2, 27, 12, 3, 110, 55, 19, 4, 429, 229, 91, 27, 5, 1638, 912, 393, 136, 36, 6, 6188, 3549, 1614, 612, 191, 46, 7, 23256, 13636, 6447, 2601, 897, 257, 57, 8, 87210, 52020, 25332, 10695, 3951, 1260, 335, 69, 9, 326876, 197676, 98532
OFFSET
3,2
COMMENTS
See A228708 for further information.
LINKS
J. Noonan and D. Zeilberger, [math/9808080] The Enumeration of Permutations With a Prescribed Number of ``Forbidden'' Patterns. Also Adv. in Appl. Math. 17 (1996), no. 4, 381--407. MR1422065 (97j:05003).
FORMULA
T(n, k) = C(2n-k-1, n) - C(2n-k-1, n+3) + C(2n-2k-2, n-k-4) - C(2n-2k-2, n-k-1) + C(2n-2k-3, n-k-4) - C(2n-2k-3, n-k-2).
T(n, n-2) = n-2, T(n, k) = T(n, k+1) + T(n-1, k-1) + T(n-k, 2).
EXAMPLE
Full triangle begins:
0
0,0
0,0,0
1,1,0,0
6,6,2,0,0
27,27,12,3,0,0
110,110,55,19,4,0,0
429,429,229,91,27,5,0,0
1638,1638,912,393,136,36,6,0,0
6188,6188,3549,1614,612,191,46,7,0,0
23256,23256,13636,6447,2601,897,257,57,8,0,0
...
PROG
(PARI) for(n=1, 15, for(k=1, n-2, print1(binomial(2*n-k-1, n)-binomial(2*n-k-1, n+3)+binomial(2*n-2*k-2, n-k-4)-binomial(2*n-2*k-2, n-k-1)+binomial(2*n-2*k-3, n-k-4)-binomial(2*n-2*k-3, n-k-2)", ")))
CROSSREFS
See A228708 for the full triangle.
T(n, 1) = A003517(n+1). Cf. A001089.
Sequence in context: A142707 A305874 A176965 * A176591 A362989 A191703
KEYWORD
nonn,tabl,easy
AUTHOR
Ralf Stephan, May 21 2003
STATUS
approved