

A277040


Limit of the coefficient of x^(3^m + n) in B(x)^(n+1) as m grows, where B(x) = Sum_{k>=0} x^(3^k).


3



1, 2, 3, 8, 25, 66, 357, 1968, 8073, 135260, 1271941, 7376172, 113614228, 1258281038, 8941092630
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The g.f. of A277041(n) = a(n)/(n+1) appears to have an interesting functional interpretation.


LINKS

Table of n, a(n) for n=0..14.


FORMULA

a(n) = (n+1)*A277041(n).


PROG

(PARI) { a(n) = local(m=n + ceil(log(n+3)/log(3)), B=sum(k=0, m, x^(3^k))); polcoeff((B+O(x^(3^m+n+1)))^(n+1), 3^m+n) }
for(n=0, 15, print1(a(n), ", "))


CROSSREFS

Cf. A144690, A277041, A277042, A277043.
Sequence in context: A286820 A129202 A127905 * A009224 A171199 A176962
Adjacent sequences: A277037 A277038 A277039 * A277041 A277042 A277043


KEYWORD

nonn,more


AUTHOR

Paul D. Hanna, Sep 25 2016


STATUS

approved



