|
|
A176960
|
|
Primes p such that p^2 - 8, p^2 - 6 and p^2 - 2 are prime.
|
|
0
|
|
|
5, 7, 467, 4373, 5987, 11933, 13463, 13907, 14747, 19843, 20407, 22307, 24677, 36563, 37693, 40213, 41603, 42397, 43003, 44203, 56747, 58963, 66047, 66173, 87407, 91033, 98597, 98873, 101183, 115523, 122323, 124703, 126107, 139333
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
[In French: "avorteurs de quadruplets".]
p*p is the lonely composite number in quadruplet (10k+1, 10k+3, 10k+7, 10k+9). Necessary: p^2 = 10k + 9.
|
|
LINKS
|
|
|
PROG
|
(Magma) [p: p in PrimesUpTo(1000000)| IsPrime(p^2-8) and IsPrime(p^2-6) and IsPrime (p^2-2)] // Vincenzo Librandi, Aug 06 2010
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alain MAROT (marot.alain(AT)orange.fr), Apr 29 2010
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|