login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159019
Numerator of Hermite(n, 5/8).
1
1, 5, -7, -355, -1103, 39925, 376105, -5785075, -113172895, 915114725, 37169367385, -106989875075, -13618566694895, -27008721445675, 5530280137847945, 39751307896902125, -2455777926682502975, -32631559276626402875, 1172785395732149604025
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 14 2018: (Start)
a(n) = 4^n * Hermite(n, 5/8).
E.g.f.: exp(5*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/4)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 5/8], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011 *)
Table[4^n*HermiteH[n, 5/8], {n, 0, 30}] (* G. C. Greubel, Jul 14 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 5/8)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(5*x - 16*x^2))) \\ G. C. Greubel, Jul 14 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(5/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 14 2018
CROSSREFS
Sequence in context: A196281 A196331 A344361 * A059394 A176960 A114368
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved