login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159017
Numerator of Hermite(n, 3/8).
3
1, 3, -23, -261, 1425, 37683, -114951, -7579989, 3009057, 1949504355, 4981904649, -608895679653, -3580317475407, 223074988560531, 2158637035450905, -93461683768765173, -1316530828322729919, 43902789604639578819, 847901139421483812393
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Jul 09 2018: (Start)
a(n) = 4^n * Hermite(n, 3/8).
E.g.f.: exp(3*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/4)^(n-2*k)/(k!*(n-2*k)!)). (End)
MATHEMATICA
Numerator[Table[HermiteH[n, 3/8], {n, 0, 50}]] (* Vladimir Joseph Stephan Orlovsky, Apr 01 2011*)
Table[4^n*HermiteH[n, 3/8], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 3/8)) \\ Charles R Greathouse IV, Jan 29 2016
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
CROSSREFS
Cf. A159014.
Sequence in context: A318004 A098681 A118790 * A004700 A378114 A199544
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved