|
|
A159017
|
|
Numerator of Hermite(n, 3/8).
|
|
3
|
|
|
1, 3, -23, -261, 1425, 37683, -114951, -7579989, 3009057, 1949504355, 4981904649, -608895679653, -3580317475407, 223074988560531, 2158637035450905, -93461683768765173, -1316530828322729919, 43902789604639578819, 847901139421483812393
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 4^n * Hermite(n, 3/8).
E.g.f.: exp(3*x - 16*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/4)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
MATHEMATICA
|
Table[4^n*HermiteH[n, 3/8], {n, 0, 30}] (* G. C. Greubel, Jul 09 2018 *)
|
|
PROG
|
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Jul 09 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|