login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199544
G.f.: A(x) = Sum_{n>=0} x^n * A(x)^(n^2) * (1 - A(x)^(2*n+1))/(1 - A(x)).
1
1, 3, 23, 271, 3876, 61809, 1057324, 18999550, 354126904, 6790260312, 133193201306, 2661966127599, 54046089492190, 1112240570177203, 23161201079072759, 487383250552812705, 10353102122586909350, 221819714961583800336, 4790442570608936302923
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 3*x + 23*x^2 + 271*x^3 + 3876*x^4 + 61809*x^5 +...
where the g.f. A = A(x) satisfies the equivalent expressions:
A = 1 + x*A*(1-A^3)/(1-A) + x^2*A^4*(1-A^5)/(1-A) + x^3*A^9*(1-A^7)/(1-A) + x^4*A^16*(1-A^9)/(1-A) + x^5*A^25*(1-A^11)/(1-A) +...
A = 1 + x*(A + A^2 + A^3) + x^2*(A^4 + A^5 + A^6 + A^7 + A^8) + x^3*(A^9 + A^10 + A^11 + A^12 + A^13 + A^14 + A^15) +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(m=0, n, x^m*A^(m^2)*sum(k=0, 2*m, A^k)+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A159017 A004700 A378114 * A302117 A343772 A006555
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 07 2011
STATUS
approved