OFFSET
1,4
COMMENTS
Triangle T(n,m)*m!^2/n!^2=
1. Riordan Array (1,x^2*cotan(x)) without first column.
2. Riordan Array (x*cotan(x),x^2*cotan(x)) numbering triangle (0,0).
LINKS
D. Kruchinin and V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, Journal of Integer Sequence, Vol. 15 (2012), article 12.9.3.
V. V. Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011-2013.
Dmitry V. Kruchinin and Vladimir V. Kruchinin, A Generating Function for the Diagonal T_{2n,n} in Triangles, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.6.
T. Mansour, M. Shattuck and D. G. L. Wang, Counting subwords in flattened permutations, arXiv preprint arXiv:1307.3637 [math.CO], 2013.
FORMULA
T(n,m) = n!^2/m!^2*2^(n-2*m)*(-1)^((n-m)/2)*sum(l=0..m, (2^l*l!*binomial(m,l)* sum(k..0,n-2*m+l,(k!*stirling1(l+k,l)*stirling2(n-2*m+l,k))/((l+k)!*(n-2*m+l)!)))).
EXAMPLE
T(n,m)*m!^2/n!^2=
1
0, 1
-1/3, 0, 1
0, -2/3, 0, 1
-1/45, 0, -1, 0, 1
0, 1/15, 0, -4/3, 0, 1
-2/945, 0, 4/15, 0, -5/3, 0, 1
MATHEMATICA
Table[n!^2/(m!)^2*2^(n - 2 m) (-1)^((n - m)/2) Sum[(2^l (l!) Binomial[m, l] Sum[(k! StirlingS1[l + k, l] StirlingS2[n - 2 m + l, k])/((l + k)! (n - 2 m + l)!), {k, 0, n - 2 m + l}]), {l, 0, m}], {n, 10}, {m, n}] // Flatten (* Michael De Vlieger, Apr 26 2016 *)
PROG
(Maxima)
T(n, m):=n!^2/m!^2*2^(n-2*m)*(-1)^((n-m)/2)*sum((2^l*l!*binomial(m, l)* sum((k!*stirling1(l+k, l)*stirling2(n-2*m+l, k))/((l+k)!*(n-2*m+l)!), k, 0, n-2*m+l)), l, 0, m);
(PARI) T(n, m) = n!^2/m!^2*2^(n - 2*m)*(-1)^((n - m)/2)*sum(l=0, m, (2^l*l!*binomial(m, l)*sum(k=0, n - 2*m + l, (k!*stirling(l + k, l, 1)*stirling(n - 2*m + l, k, 2))/((l + k)!*(n - 2*m + l)!))));
{for(n=1, 10, for(m=1, n, print1(T(n, m), ", "); ); print(); ); } \\ Indranil Ghosh, Mar 10 2017
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Vladimir Kruchinin, Nov 07 2011
STATUS
approved