login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322731
E.g.f. C(x,y) = 1 + Integral S(x,y)*C(y,x) dx such that C(x,y)^2 - S(x,y)^2 = 1 and C(y,x) = Integral S(y,x)*C(x,y) dy, where C(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k)*y^(2*k)/(2*n)!, as a triangle of coefficients T(n,k) read by rows.
5
1, 1, 0, 1, 12, 0, 1, 180, 120, 0, 1, 2632, 9520, 896, 0, 1, 37080, 504000, 369600, 5760, 0, 1, 487476, 23562000, 57376704, 12735360, 33792, 0, 1, 6045676, 1039654616, 6645999360, 5256451200, 399246848, 186368, 0, 1, 71745360, 44074736160, 674286412800, 1336544352000, 427859367936, 11498905600, 983040, 0, 1, 823269744, 1793634471360, 63624274826112, 271641150443520, 224718683904000, 32219490680832, 308405698560, 5013504, 0
OFFSET
0,5
COMMENTS
See A322221 for another description of the e.g.f. of this sequence:
T(n,k) = binomial(2*n,2*k) * A322221(n,k).
Row reversal of A322732.
FORMULA
The special functions S(x,y), C(x,y), and D(x,y) satisfy the following relations.
(1a) S(x,y) = Integral C(x,y) * C(y,x) dx.
(1b) S(y,x) = Integral C(y,x) * C(x,y) dy.
(1c) C(x,y) = 1 + Integral S(x,y) * C(y,x) dx.
(1d) C(y,x) = 1 + Integral S(y,x) * C(x,y) dy.
(2a) C(x,y)^2 - S(x,y)^2 = 1.
(2b) C(y,x)^2 - S(y,x)^2 = 1.
(3a) S(x,y) = sinh( Integral C(y,x) dx ).
(3b) S(y,x) = sinh( Integral C(x,y) dy ).
(3c) C(x,y) = cosh( Integral C(y,x) dx ).
(3d) C(y,x) = cosh( Integral C(x,y) dy ).
(4a) C(x,y) + S(x,y) = exp( Integral C(y,x) dx ).
(4b) C(y,x) + S(y,x) = exp( Integral C(x,y) dy ).
(5a) d/dx S(x,y) = C(x,y) * C(y,x).
(5b) d/dx C(x,y) = S(x,y) * C(y,x).
(5c) d/dy S(y,x) = C(y,x) * C(x,y).
(5d) d/dy C(y,x) = S(y,x) * C(x,y).
Introducing function D(x,y) completes the symmetric relations as follows.
(6a) D(x,y) = Integral S(y,x) * C(x,y) dx.
(6b) D(y,x) = Integral S(x,y) * C(y,x) dy.
(7a) S(x,y) = sinh(x) + Integral C(x,y) * D(x,y) dy.
(7b) S(y,x) = sinh(y) + Integral C(y,x) * D(y,x) dx.
(7c) C(x,y) = cosh(x) + Integral S(x,y) * D(x,y) dy.
(7d) C(y,x) = cosh(y) + Integral S(y,x) * D(y,x) dx.
(8a) C(x,y) + S(x,y) = exp( x + Integral D(x,y) dy ).
(8b) C(y,x) + S(y,x) = exp( y + Integral D(y,x) dx ).
(9a) Integral C(y,x) dx = x + Integral D(x,y) dy.
(9b) Integral C(x,y) dy = y + Integral D(y,x) dx.
(10a) d/dy S(x,y) = C(x,y) * D(x,y).
(10b) d/dy C(x,y) = S(x,y) * D(x,y).
(10c) d/dx S(y,x) = C(y,x) * D(y,x).
(10d) d/dx C(y,x) = S(y,x) * D(y,x).
(10e) d/dx D(x,y) = S(y,x) * C(x,y).
(10f) d/dy D(y,x) = S(x,y) * C(y,x).
For brevity, let Cx = C(x,y), Cy = C(y,x), Sx = S(x,y), Sy = S(y,x), Dx = D(x,y), Dy = D(y,x), then further relations may be written as follows.
(11a) Cx*Cy + Sx*Sy = cosh(y) + Integral (Cy + Dy)*(Sx*Cy + Cx*Sy) dx.
(11b) Sx*Cy + Cx*Sy = sinh(y) + Integral (Cy + Dy)*(Cx*Cy + Sx*Sy) dx.
(11c) Cx*Cy + Sx*Sy = cosh(x) + Integral (Cx + Dx)*(Sx*Cy + Cx*Sy) dy.
(11d) Sx*Cy + Cx*Sy = sinh(x) + Integral (Cx + Dx)*(Cx*Cy + Sx*Sy) dy.
(12a) (Cx + Sx)*(Cy + Sy) = exp( y + Integral Cy + Dy dx ).
(12b) (Cx + Sx)*(Cy + Sy) = exp( x + Integral Cx + Dx dy ).
(12c) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Dx dy + Integral Dy dx ).
(12d) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Integral Sx*Cy + Cx*Sy dx dy ).
(12e) x + Integral (Cx + Dx) dy = y + Integral (Cy + Dy) dx.
(13a) d/dx (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cy + Dy).
(13b) d/dy (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cx + Dx).
(14a) (Cx + Sx)*(Cy + Sy) = exp(y) + Integral (Cx + Sx)*(Cy + Sy)*(Cy + Dy) dx.
(14b) (Cx + Sx)*(Cy + Sy) = exp(x) + Integral (Cx + Sx)*(Cy + Sy)*(Cx + Dx) dy.
EXAMPLE
E.g.f. C(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n-2*k)*y^(2*k)/(2*n)! begins
C(x,y) = 1 + (1*x^2)/2! + (1*x^4 + 12*x^2*y^2)/4! + (1*x^6 + 180*x^4*y^2 + 120*x^2*y^4)/6! + (1*x^8 + 2632*x^6*y^2 + 9520*x^4*y^4 + 896*x^2*y^6)/8! + (1*x^10 + 37080*x^8*y^2 + 504000*x^6*y^4 + 369600*x^4*y^6 + 5760*x^2*y^8)/10! + (1*x^12 + 487476*x^10*y^2 + 23562000*x^8*y^4 + 57376704*x^6*y^6 + 12735360*x^4*y^8 + 33792*x^2*y^10)/12! + (1*x^14 + 6045676*x^12*y^2 + 1039654616*x^10*y^4 + 6645999360*x^8*y^6 + 5256451200*x^6*y^8 + 399246848*x^4*y^10 + 186368*x^2*y^12)/14! + (1*x^16 + 71745360*x^14*y^2 + 44074736160*x^12*y^4 + 674286412800*x^10*y^6 + 1336544352000*x^8*y^8 + 427859367936*x^6*y^10 + 11498905600*x^4*y^12 + 983040*x^2*y^14)/16! + ...
This series may be defined by
C(x,y) = cosh( Integral C(y,x) dx ), and
C(y,x) = cosh( Integral C(x,y) dy ).
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n-2*k)*y^(2*k)/(2*n)! in C(x,y) starts
1;
1, 0;
1, 12, 0;
1, 180, 120, 0;
1, 2632, 9520, 896, 0;
1, 37080, 504000, 369600, 5760, 0;
1, 487476, 23562000, 57376704, 12735360, 33792, 0;
1, 6045676, 1039654616, 6645999360, 5256451200, 399246848, 186368, 0;
1, 71745360, 44074736160, 674286412800, 1336544352000, 427859367936, 11498905600, 983040, 0;
1, 823269744, 1793634471360, 63624274826112, 271641150443520, 224718683904000, 32219490680832, 308405698560, 5013504, 0; ...
PROG
(PARI) {T(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n,
Sx = intformal( Cx*Cy +x*O(x^(2*n)), x);
Cx = 1 + intformal( Sx*Cy, x);
Sy = intformal( Cy*Cx +y*O(y^(2*k)), y);
Cy = 1 + intformal( Sy*Cx, y));
(2*n)! *polcoeff(polcoeff(Cx, 2*n-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A322730, A322732, A322734 (row sums).
Cf. A322221.
Sequence in context: A246223 A199542 A304330 * A370330 A370430 A113923
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 26 2018
STATUS
approved