login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A322730
E.g.f. S(x,y) = Integral C(x,y)*C(y,x) dx such that C(x,y)^2 - S(x,y)^2 = 1 and C(y,x) = 1 + Integral S(y,x)*C(x,y) dy, where S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/(2*n+1)!, as a triangle of coefficients T(n,k) read by rows.
5
1, 1, 3, 1, 50, 5, 1, 693, 1155, 7, 1, 9972, 70686, 23268, 9, 1, 135575, 3479850, 4871790, 406725, 11, 1, 1727622, 157346475, 631853508, 283223655, 6334614, 13, 1, 20926185, 6802724565, 67722059405, 87071219235, 14965994043, 90680135, 15, 1, 243932456, 282646403340, 6596182917688, 19436510145910, 10365430299224, 734880648684, 1219662280, 17, 1, 2760372459, 11263126697316, 606536559381564, 3683652871295358, 4502242398249882, 1126425038851476, 33789380091948, 15642110601, 19
OFFSET
0,3
COMMENTS
See A322220 for another description of the e.g.f. of this sequence:
T(n,k) = binomial(2*n+1,2*k) * A322220(n,k).
FORMULA
The special functions S(x,y), C(x,y), and D(x,y) satisfy the following relations.
(1a) S(x,y) = Integral C(x,y) * C(y,x) dx.
(1b) S(y,x) = Integral C(y,x) * C(x,y) dy.
(1c) C(x,y) = 1 + Integral S(x,y) * C(y,x) dx.
(1d) C(y,x) = 1 + Integral S(y,x) * C(x,y) dy.
(2a) C(x,y)^2 - S(x,y)^2 = 1.
(2b) C(y,x)^2 - S(y,x)^2 = 1.
(3a) S(x,y) = sinh( Integral C(y,x) dx ).
(3b) S(y,x) = sinh( Integral C(x,y) dy ).
(3c) C(x,y) = cosh( Integral C(y,x) dx ).
(3d) C(y,x) = cosh( Integral C(x,y) dy ).
(4a) C(x,y) + S(x,y) = exp( Integral C(y,x) dx ).
(4b) C(y,x) + S(y,x) = exp( Integral C(x,y) dy ).
(5a) d/dx S(x,y) = C(x,y) * C(y,x).
(5b) d/dx C(x,y) = S(x,y) * C(y,x).
(5c) d/dy S(y,x) = C(y,x) * C(x,y).
(5d) d/dy C(y,x) = S(y,x) * C(x,y).
Introducing function D(x,y) completes the symmetric relations as follows.
(6a) D(x,y) = Integral S(y,x) * C(x,y) dx.
(6b) D(y,x) = Integral S(x,y) * C(y,x) dy.
(7a) S(x,y) = sinh(x) + Integral C(x,y) * D(x,y) dy.
(7b) S(y,x) = sinh(y) + Integral C(y,x) * D(y,x) dx.
(7c) C(x,y) = cosh(x) + Integral S(x,y) * D(x,y) dy.
(7d) C(y,x) = cosh(y) + Integral S(y,x) * D(y,x) dx.
(8a) C(x,y) + S(x,y) = exp( x + Integral D(x,y) dy ).
(8b) C(y,x) + S(y,x) = exp( y + Integral D(y,x) dx ).
(9a) Integral C(y,x) dx = x + Integral D(x,y) dy.
(9b) Integral C(x,y) dy = y + Integral D(y,x) dx.
(10a) d/dy S(x,y) = C(x,y) * D(x,y).
(10b) d/dy C(x,y) = S(x,y) * D(x,y).
(10c) d/dx S(y,x) = C(y,x) * D(y,x).
(10d) d/dx C(y,x) = S(y,x) * D(y,x).
(10e) d/dx D(x,y) = S(y,x) * C(x,y).
(10f) d/dy D(y,x) = S(x,y) * C(y,x).
For brevity, let Cx = C(x,y), Cy = C(y,x), Sx = S(x,y), Sy = S(y,x), Dx = D(x,y), Dy = D(y,x), then further relations may be written as follows.
(11a) Cx*Cy + Sx*Sy = cosh(y) + Integral (Cy + Dy)*(Sx*Cy + Cx*Sy) dx.
(11b) Sx*Cy + Cx*Sy = sinh(y) + Integral (Cy + Dy)*(Cx*Cy + Sx*Sy) dx.
(11c) Cx*Cy + Sx*Sy = cosh(x) + Integral (Cx + Dx)*(Sx*Cy + Cx*Sy) dy.
(11d) Sx*Cy + Cx*Sy = sinh(x) + Integral (Cx + Dx)*(Cx*Cy + Sx*Sy) dy.
(12a) (Cx + Sx)*(Cy + Sy) = exp( y + Integral Cy + Dy dx ).
(12b) (Cx + Sx)*(Cy + Sy) = exp( x + Integral Cx + Dx dy ).
(12c) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Dx dy + Integral Dy dx ).
(12d) (Cx + Sx)*(Cy + Sy) = exp( x + y + Integral Integral Sx*Cy + Cx*Sy dx dy ).
(12e) x + Integral (Cx + Dx) dy = y + Integral (Cy + Dy) dx.
(13a) d/dx (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cy + Dy).
(13b) d/dy (Cx + Sx)*(Cy + Sy) = (Cx + Sx)*(Cy + Sy)*(Cx + Dx).
(14a) (Cx + Sx)*(Cy + Sy) = exp(y) + Integral (Cx + Sx)*(Cy + Sy)*(Cy + Dy) dx.
(14b) (Cx + Sx)*(Cy + Sy) = exp(x) + Integral (Cx + Sx)*(Cy + Sy)*(Cx + Dx) dy.
EXAMPLE
E.g.f. S(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(2*n+1-2*k)*y^(2*k)/(2*n+1)! begins
S(x,y) = x + (1*x^3 + 3*x*y^2)/3! + (1*x^5 + 50*x^3*y^2 + 5*x*y^4)/5! + (1*x^7 + 693*x^5*y^2 + 1155*x^3*y^4 + 7*x*y^6)/7! + (1*x^9 + 9972*x^7*y^2 + 70686*x^5*y^4 + 23268*x^3*y^6 + 9*x*y^8)/9! + (1*x^11 + 135575*x^9*y^2 + 3479850*x^7*y^4 + 4871790*x^5*y^6 + 406725*x^3*y^8 + 11*x*y^10)/11! + (1*x^13 + 1727622*x^11*y^2 + 157346475*x^9*y^4 + 631853508*x^7*y^6 + 283223655*x^5*y^8 + 6334614*x^3*y^10 + 13*x*y^12)/13! + (1*x^15 + 20926185*x^13*y^2 + 6802724565*x^11*y^4 + 67722059405*x^9*y^6 + 87071219235*x^7*y^8 + 14965994043*x^5*y^10 + 90680135*x^3*y^12 + 15*x*y^14)/15! + ...
The series S(x,y) may be defined by
S(x,y) = Integral C(x,y) * C(y,x) dx, and
S(y,x) = Integral C(y,x) * C(x,y) dy,
such that C(x,y)^2 = 1 + S(x,y)^2.
TRIANGLE.
This triangle of coefficients T(n,k) of x^(2*n+1-2*k)*y^(2*k)/(2*n+1)! in S(x,y) starts
1;
1, 3;
1, 50, 5;
1, 693, 1155, 7;
1, 9972, 70686, 23268, 9;
1, 135575, 3479850, 4871790, 406725, 11;
1, 1727622, 157346475, 631853508, 283223655, 6334614, 13;
1, 20926185, 6802724565, 67722059405, 87071219235, 14965994043, 90680135, 15;
1, 243932456, 282646403340, 6596182917688, 19436510145910, 10365430299224, 734880648684, 1219662280, 17;
1, 2760372459, 11263126697316, 606536559381564, 3683652871295358, 4502242398249882, 1126425038851476, 33789380091948, 15642110601, 19; ...
PROG
(PARI) {T(n, k) = my(Sx=x, Sy=y, Cx=1, Cy=1); for(i=1, 2*n,
Sx = intformal( Cx*Cy +x*O(x^(2*n)), x);
Cx = 1 + intformal( Sx*Cy, x);
Sy = intformal( Cy*Cx +y*O(y^(2*k)), y);
Cy = 1 + intformal( Sy*Cx, y));
(2*n+1)! *polcoeff(polcoeff(Sx, 2*n+1-2*k, x), 2*k, y)}
for(n=0, 10, for(k=0, n, print1( T(n, k), ", ")); print(""))
CROSSREFS
Cf. A322731, A322732, A322733 (row sums).
Cf. A322220.
Sequence in context: A010292 A369756 A133104 * A292425 A095988 A189898
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Dec 26 2018
STATUS
approved